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THE RISE OF CLIMATE RISKS: EVIDENCE FROM EXPECTED 
DEFAULT FREQUENCIES FOR FIRMS 

by Matilde Faralli* and Francesco Ruggiero**

Abstract

The paper investigates the relationship between climate transition risk and credit risk by analysing 
firms’ carbon emissions and Moody’s Expected Default Frequencies (EDFs). The results suggest that the 
Paris Agreement was a turning point in the relationship between emissions and credit risk: following 
the Agreement, the correlation between emission levels and EDFs became positive and statistically 
significant. By decomposing the EDFs into their core components, increased asset volatility is found 
to be the main channel through which transition risk affects credit risk for high-emissions companies. 
The analysis sheds light on the mechanisms linking climate transition risk to financial risk. The 
results are robust across different model specifications, control variables and geographic areas, and 
indicate that climate-related financial risks have become increasingly important for credit markets.

JEL Classification: G30, G32, C13, H23.

Keywords: Climate Change, Credit Risk, EDF, Carbon Emissions, Transition Risk.

Sintesi

Il lavoro analizza la relazione tra rischio di transizione climatica e rischio di credito esaminando le 
emissioni di carbonio delle imprese e le Expected Default Frequencies (EDFs) stimate da Moody’s. I 
risultati suggeriscono che l’Accordo di Parigi ha rappresentato un punto di svolta nella relazione tra 
emissioni e rischio di credito: successivamente a quell’accordo la correlazione statisticamente tra 
livelli delle emissioni ed EDFs è divenuta positiva e statisticamente significativa. Scomponendo le 
EDFs nelle loro componenti fondamentali, la maggiore volatilità degli attivi viene identificato come 
il principale canale attraverso cui il rischio di transizione incide sul rischio di credito per le imprese 
ad alte emissioni. L’analisi contribuisce a chiarire i meccanismi che collegano il rischio climatico di 
transizione al rischio finanziario. I risultati si mostrano robusti rispetto a diverse specificazioni del 
modello, variabili di controllo e aree geografiche, e indicano che i rischi finanziari legati al clima 
hanno assunto una crescente rilevanza per i mercati del credito.

* Imperial College Business School.

** Banca d’Italia, Financial Risk Management Directorate.
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1. Introduction

With increasing attention devoted to climate issues, scholars have studied the effect of

climate change on the economy from several perspectives.1 A fast-growing strand of the lit-

erature investigates the relationship between climate-transition risk (i.e. the risks stemming

from implementing policy mitigating strategies) and firms’ credit risk. Measuring this link

is complicated because both variables suffer from endogeneity problems and measurement

errors. Using ESG ratings as a proxy for firms’ sustainability, earlier studies show that an

increase in ESG scores leads to lower CDS spreads (Barth et al., 2022), better credit ratings

(Devalle et al., 2017) and lower bond risk premia (Kotró and Márkus, 2020).

Other studies use carbon emissions to investigate the effect of transition risk on bond

ratings and yield spreads (Seltzer et al., 2022), option implied volatility slope (Ilhan et al.,

2021), CDS spreads (Blasberg et al., 2021) and market-implied distance-to-default (Bouchet

and Le Guenedal, 2020; Capasso et al., 2020; Carbone et al., 2021; Kabir et al., 2021). These

latter studies construct a measure of default risk by estimating Merton’s distance to default

(Merton, 1974). Capasso et al. (2020) and Kabir et al. (2021) find a positive correlation

between the probability of default and firms’ carbon footprints. Carbone et al. (2021) find

some evidence only when using relative carbon emissions (i.e. carbon intensity), but not

when using emissions in level.

Our paper builds on this latter stream of research. We study the relationship between

climate transition risk and credit risk by collecting data on emissions and Moody’s Ex-

pected Default Frequencies (EDFs) for 1,308 firms from 2008 to 2022. Moody’s EDF, a

market-implied probability that a firm will default, has a number of desirable features for

Acknowledgments: We thank the participants of the JRC Summer School on Sustainable Finance,
the PhD Informal Seminars at the University of Naples Federico II, and our colleagues at Banca d’Italia for
their valuable comments. The views expressed here are those of the authors and do not necessarily reflect
those of Banca d’Italia. Any remaining errors are our own.

1For a summary of the related literature on climate finance, see Giglio et al. (2021)
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our analysis. First, compared to studies that use computed distances to default, Moody’s uses

proprietary actual default data to obtain physical probabilities of default.2 Starting from the

risk-neutral distance to default obtained with an improved version of Merton (1974) model,

they project the computed distances to default onto actual default data, hence obtaining a

linear mapping from the risk-neutral probabilities into physical default probabilities. This

approach has the advantage of excluding risk-aversion adjustment components that compli-

cate the inference on the data. Second, using the EDF we study the time dimension of credit

risk (i.e. whether climate risks affect the probability of a firm defaulting in 1, 5, or 10 years)

as well as the term structure of climate change risk. This provides us with information on

when and how transition risks are expected to materialize and how they will affect firms

in different sectors. Third, the EDF can be broken down into its main components: asset

volatility, the market value of assets, and the default point. This allows us to disentangle

the effect of carbon emissions on the different drivers of credit risk and thus indirectly on

the default probability. By construction, the EDF drivers fully explain the EDF variability.

Hence, by regressing EDF components on emission levels, we can show how carbon emissions

individually affect each EDF driver.

In examining how climate-related risks affect credit markets, we distinguish between

absolute emissions (measured as total Scope 1 emissions) and relative emissions (measured

as carbon intensity), and assess how the market perception of these measures changes over

time. Specifically, we regress Moody’s 1-, 5-, and 10-year EDFs on absolute direct emissions

and emission intensity. Our results indicate that, after accounting for firm fundamentals

and sectoral variations, absolute emissions have no effect on credit risk. Instead, we find

a positive relationship between carbon intensity and credit risk, consistent with previous

2Risk-neutral probabilities are useful tools for pricing derivatives, as they assume market participants
are indifferent to risk and only care about expected returns. However, they fail to incorporate real-world
risks, such as climate risks, that can significantly impact firms’ financial performance. Hence, by taking into
account the uncertainty and potential impacts of climate risks, physical probabilities (i.e. historically-based)
allow for a more accurate assessment of a firm’s credit risk.

8



studies suggesting that more polluting firms within a sector face higher default risks (Blasberg

et al., 2021; Capasso et al., 2020; Carbone et al., 2021; Kabir et al., 2021). However, this

relationship is sensitive to specification choices and driven largely by upper-tail observations.

We further explore this issue using a quintile regression approach, which confirms that the

baseline patterns persist.

We hypothesize that absolute emissions became increasingly relevant for credit risk fol-

lowing the adoption of the Paris Climate Accords (also referred to as the Paris Agreement).

To test this, we examine whether the signing and ratification of the agreement marked a

structural break in policies, particularly from a corporate perspective. In other words, we

explore the relevance of the Paris Agreement as a potential determinant of increased credit

risk through its amplifying effect on climate transition risk. Our underlying hypothesis is

that for signatory countries guided by the agreement’s pledges, the probability of increased

transition risk should rise in response to stricter climate regulations, thereby increasing un-

certainty for domestic firms.3 This effect should be more pronounced for firms with higher

carbon emissions (top quintiles), which may face greater challenges in complying with stricter

carbon regulations. This uncertainty would then directly translate into higher asset volatility,

consequently leading to a higher EDF.

In the aftermath of the Paris Agreement, we find that higher direct emissions lead to an

increase in the probability of default for firms within the same credit rating class. This finding

suggests that policies aimed at reducing carbon emissions are effective in reducing transition

risk and improving creditworthiness, highlighting the potential benefits of environmentally

responsible practices for firms.

We also provide evidence of the channels through which carbon emissions affect credit

risk by breaking-down EDF into its core components: asset volatility, the market value

3Although the agreement does not legally bind signatory countries to enforce its pledges, several authors
have shown that investors and financial markets react to the signaled increased global commitment on climate
action (see Monasterolo and De Angelis, 2020; Kruse et al., 2020; Seltzer et al., 2022).
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of assets, and default point. First, we document how each component enters linearly into

the EDF. We show how, by construction, higher asset volatility is associated with a higher

probability of default, while higher default points and market value of assets reduce default

risk. Then, we analyze the effect of carbon emissions on each EDF component. We find that

the increased default risk of high emitters is driven by an increase in asset volatility after

the Paris Agreement. Finally, we corroborate our hypothesis that firms with high credit

risks are penalized only when there are regulations in place that internalize the costs of

polluting through an analysis focused on geographical differences. Different countries and

regions have varying regulations and policies to address climate change, which can influence

the speed and scale of the transition to a low-carbon economy. For instance, the US has

been less stringent in implementing carbon reduction policies compared to other countries,

while European carbon policies are more stringent and accurately tailored for various sectors.

Consistent with our intuition that looser regulation on carbon emissions does not penalize

polluting firms, we do not find a clear relationship between emissions and credit risk for US

firms. However, when examining the EU sample, we observe that large emitters face a higher

credit risk premium compared to their peers. This result is also confirmed when looking at

the effect of carbon price surprises connected to the EU Emission Trading System (EU ETS)

on credit risk.

To test the robustness of the findings, we conduct a series of supplementary analysis

to ensure that our results are not driven by the choice of credit or transition risk proxies.

We show that our findings are consistent when using alternative winsorization thresholds,

and also different measures of credit risk, including CDS spreads, CDS-implied ratings, and

Moody’s ratings. In all cases, we observe a positive correlation between credit risk and car-

bon intensity, but no significant relationship with absolute emissions. We also acknowledge

that the EDF, given its sensitivity to market expectations and future credit risk related to the

transition to a low-carbon economy, may reflect forward-looking transition risk rather than

the long-term, backward-looking impact of carbon emissions, which is typically represented
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by absolute emissions (Bolton and Kacperczyk, 2021b). To address the forward-looking

dimension of transition risk, we use Trucost’s carbon earnings-at-risk—which captures the

potential financial cost firms may incur under future carbon pricing—and the announcement

of science-based targets, which are voluntary corporate commitments to reduce greenhouse

gas emissions in line with the goals of the Paris Agreement. We perform additional ro-

bustness checks to test the consistency of the relationship between carbon emissions and

the probability of default. Our results indicate that forward-looking transition risks —mea-

sured by carbon earnings-at-risk relative to EBITDA— are positively associated with higher

default probabilities. We also find that medium- and long-term EDFs temporarily decline

around the announcement of science-based targets for high emitters, suggesting a short-lived

reduction in perceived credit risk. Furthermore, the findings remain robust to the inclusion

of lagged emission levels, although we observe no significant effect from the short-term rate

of change in carbon emissions.

To the best of our knowledge, this is the first paper in the related literature that using

Moody’s EDFs to proxy the probability of default provides insights into the drivers of climate

transition risks on firm-level credit risk before and after the Paris Agreement.4 This study

complements the existing literature in two key aspects. First, we highlight that the signing of

the Paris Agreement and the subsequent rise in investors’ awareness of climate risks marked a

structural break in policies, particularly from a corporate perspective. The Paris Agreement

appears to be a significant determinant of increased credit risk through its amplifying effect

on climate transition risk. Second, we identify the channels through which carbon emissions

affect firms’ probability of default, along with the relative weights of each. Our analysis

reveals that this influence primarily occurs through increased asset volatility, especially for

high-emission firms. Finally, we provide additional evidence that climate regulation strongly

4In a different research setting, Acharya et al. (2022) use Moody’s EDFs to show that heat stress exposure
increases credit risk of municipal as well as corporate bonds.
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impacts the integration of climate risks into credit risk assessments by offering a comparative

analysis of firms in the US and the EU, which are subject to different sets of rules and

requirements concerning climate risk.

Related Literature. In the remaining part of this section, we provide a survey of how

previous studies dealt with quantifying firms’ climate-related risks and their main findings.

Earlier studies addressed this issue using corporate social responsibility metrics (e.g.

Stellner et al., 2015) and environmental scores (Höck et al., 2020). For example, Höck et al.

(2020) show that a higher environmental score leads to lower CDS spreads for firms with

ex-ante high creditworthiness, low leverage, and high market capitalization. In contrast,

Stellner et al. (2015), investigate the effect of higher corporate social responsibility (CSR)

scores on credit ratings and zero-volatility spreads (z-spreads); they find that stronger results

are driven by countries’ ESG performance, suggesting that the regulatory environment allows

a larger reduction in credit risk when companies display a higher CSR score.

Other studies used ESG ratings to show how an increase in ESG scores leads to lower

CDS spreads (Barth et al., 2022), better ratings by Moody’s (Devalle et al., 2017), and lower

bonds’ risk premia (Kotró and Márkus, 2020). Similarly to Höck et al. (2020), also Barth

et al. (2022) conclude that higher ESG ratings correlate with lower credit risk (proxy by

CDS spreads), with a stronger effect for European firms and for firms with medium ESG

ratings.5

One of the criticisms often raised against the use of ESG data is that they are unstan-

dardized, non-compulsory and not fully transparent in the way they are constructed (see,

for example, Berg et al., 2022), thus making it hard to disentangle the drivers of their effect

on credit risk.

5Another relevant paper belonging to this strand of literature is Henisz and McGlinch (2019). They show
that previous years’ higher ESG ratings, using RavenPack’s reported news, are strongly correlated with lower
future assets volatility.
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To respond to these criticisms, scholars explored different paths. Seltzer et al. (2022)

study the effect of poor environmental profiles or high carbon footprints on credit rating

scores and bond spreads for firms around the 2015 Paris Agreement. They find that firms

with high pre-existing emissions present worse scores and higher spreads, with more pro-

nounced effects in strictly regulated US states. Blasberg et al. (2021) study the correlation

between CDS spreads and transition risk, proxied by carbon intensity and emissions. They

find that climate risk has a heterogeneous effect across sectors and on the term structure of

firms’ credit risk. Ilhan et al. (2021) provide evidence that an increase in carbon intensity

leads to a larger option implied volatility slope, in particular for left tail regions.

Our paper relies on previous studies in choosing carbon disclosures as a proxy of climate

risk, more precisely transition risk. However, a recent strand of literature relies on the

construction of climate-corrected ratings. Kölbel et al. (2024) train an AI algorithm for

languages to see whether regulatory risk disclosures affect CDS spread. They find that

while disclosing transition risks increases CDS spreads, especially after the Paris Climate

Agreement of 2015, disclosing physical risks decreases CDS spreads. Other related papers

such as Klusak et al. (2023) construct a model similar to S&P’s such as to incorporate

climate physical risks into sovereign ratings for possible future climate scenarios. Sautner

et al. (2023) use quarterly earnings calls to construct an annual firm-level measure of firms’

exposure to climate. Further work might use one of these novel firms’ climate exposure

variables to corroborate our findings further.

Finally, it is important to note that our paper specifically addresses the risks associ-

ated with the potential implementation of mitigation strategies. However, there is an ever-

expanding body of literature that delves into the consequences of directly implementing

carbon taxes on firms’ default risks. For instance, Di Virgilio et al. (2023) conducted a study

investigating the impact of different levels of carbon taxes on energy prices and revealed

that the probability of default for 200,000 non-financial Italian firms was only minimally

affected. Similarly, Aiello and Angelico (2023) observed that the imposition of a carbon tax
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had a modest impact on default rates for Italian banks, which remained below historical

averages. These findings align with the growing consensus, prompting several central banks

to undertake stress tests to comprehensively evaluate the quantifiable impact of climate risks

on financial institutions.

Our paper is structured as follows. Section 2 presents the data and methodology. Sec-

tion 3 provides descriptive evidence of the relationship between carbon emissions and the

probability of default. Section 4 discusses the empirical findings, and Section 5 reports the

results of a battery of robustness checks. Finally, Section 6 concludes the paper.

2. Data and Methodology

2.1. Data

The dataset is constructed by gathering data from four main databases: carbon emissions

are retrieved from MSCI, EDFs and ratings from Moody’s CreditEdge, CDS spreads and

stock prices are obtained from Refinitiv, and balance sheet information is sourced from CRSP

and Compustat. We also collect carbon-earnings-at-risk data from Trucost to enhance our

analysis with a forward-looking measure of transition risk..

Our initial sample comprises all firms with yearly carbon emissions listed in the MSCI

database for three advanced economies: the United States, United Kingdom, and the Eu-

ropean Union, covering the period from 2008 to the end of 2022. We match the data with

Moody’s CreditEdge to obtain monthly Expected Default Frequencies (EDFs), EDF compo-

nents (asset volatility, market value of assets and default point) and Moody’s credit ratings.

Additionally, we incorporate quarterly balance sheet data from Compustat Global and North

America via WRDS.6

We also collect 5-year single-name CDS spreads for unsecured debt with the “Modified

Modified Restructuring” clause (MM14) from 2008 to 2023. All CDS spreads are in US

6When possible we impute missing values using previous quarter values.
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dollars. Following Gao et al. (2021) the data are aggregated at the monthly level by taking

the mean over the month within each entity. We exclude all CDSs with a spread higher than

4000 basis points (Zhang et al., 2009) and illiquid CDS (Blasberg et al., 2021).7

As part of our strategy to identify the effect of climate on firms’ credit risk, we apply

several filters to the sample analyzed. We winsorize EDF, EDF components, CDS Spread,

absolute emission and emission intensity at the 5% level to avoid results driven by a few

distressed companies, extremely high carbon emitters, or incorrectly reporting zero emissions.

We then discard firms with less than 7 years of complete data. Finally, we exclude firms in the

financial sector, public administration and other services sectors to avoid misinterpretation

of the outcomes driven by these entities’ significantly different financial behavior.

The final dataset includes 1,308 firms from 2008 to 2022, containing monthly EDFs,

quarterly balance sheet information, and yearly carbon emissions. For the analysis, we

additionally use two sub-samples: one consisting of 205 firms with monthly CDS spreads,

allowing comparisons with previous studies, and another comprising 615 firms with Moody’s

ratings to control for credit risk.

2.2. Methodology

To study how transition risks influence firms’ credit risks, our primary outcome variables

are Expected Default Frequency (EDF) over 1-year, 5-year, and 10-year horizons. EDF

represents the likelihood of a firm’s default within a specified period. Our independent vari-

ables of interest are absolute emissions and emissions intensity as proxies for transition risks.

Absolute emissions reflect alignment with zero-carbon emissions goals outlined by carbon

policies (Bolton and Kacperczyk, 2021a), while emissions intensity is included to address

potential reliance on intensity measures in market valuation as well to ensure comparability

across firms (Hartzmark and Shue, 2022; Zhang, 2025).

7The results are consistent when using median and end-of-the-month CDS spreads.
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We estimate the baseline regression model using a high-dimensional fixed effects method-

ology, specified as follows:

EDFi,t “ α ` β1 ˚ Emissionsi,t ` δXi,t´1 ` FE ` ϵi,t (1)

where EDF is the dependent variable measured at monthly frequency, and the key in-

dependent variables are yearly emissions—measured as LogpScope1q and Carbon Intensity.

The vector Xi,t´1 contains control variables at in the previous quarter, specifically firm size

(logarithm of total assets), debt ratio, operating margin ratio, and capital intensity. Ad-

ditionally, we include quarterly intangible capital to control for firm-level innovation and

efficiency. Given that default probability is influenced by several firm-specific factors, these

control variables help isolate the effect of the climate variable on each firm’s default proba-

bility.

To address the potential concern that contemporaneous absolute emissions might primar-

ily reflect a firm’s sales activity (Zhang, 2025), we also include current log sales as a control

variable. Since emissions data are recorded annually, we use yearly sales data for consistency.

Other control variables, however, are measured quarterly and lagged by one quarter.8

Lastly, we include a fixed effects (FE) matrix at the country, sector, and calendar-year

levels. Country-fixed effects control for variations in economic, regulatory, and institutional

factors across different nations, while sector-fixed effects account for sector-specific dynamics,

such as varying levels of carbon intensity or default risk inherent to certain industries. Year-

fixed effects capture significant events, such as the 2007–2008 financial crisis or the COVID-19

pandemic, both of which globally increased default probabilities. To account for within-firm

correlation, which arises because EDF is measured monthly while emissions are reported

yearly, we follow standard practice in the literature and cluster standard errors at the firm

8Another concern is that emissions are released with a 10-12 months lag (Zhang, 2025). For robustness,
table B10 replicates the baseline analysis with lagged variables.
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level.

3. Descriptive Statistics

The final dataset encompasses 1308 firms, offering a broad coverage across geographical

regions and sectors. Geographically, the sample includes 58% of firms from the United States,

30% from the Euro Area, and 12% from the United Kingdom. Sector-wise, around 46% of

the companies are from the manufacturing sector, followed by 9% in the information sector,

with the fewest firms in agriculture, management, and education sectors.

Table 1. Summary Statistics

Variables Mean Median SD Min Max Observation

1 Year EDF (%) 0.37 0.09 0.61 0.01 2.34 213,555
5 Year EDF (%) 0.73 0.43 0.75 0.10 2.89 213,555
10 Year EDF (%) 1.04 0.80 0.79 0.20 3.12 213,555
Asset Volatility 21.83 20.29 8.50 9.90 40.89 213,555
Log(Market Value Assets) 8.59 8.47 1.47 6.12 11.40 213,555
Log(Default Point) 7.09 7.07 1.71 3.94 10.14 213,555
Mean CDS Spreads 112.98 77.51 96.17 27.25 394.43 34,159
Moody’s Ratings 10.10 9.00 3.36 1.00 21.00 82,848
Derived CDS Ratings 8.11 8.00 3.79 1.00 21.00 43,205
Log(Scope 1) 10.49 10.25 2.81 5.42 15.94 17,909
Carbon Intensity 1.00 0.11 2.17 0.00 8.56 17,909
Log(Current Sales) 7.87 7.82 1.67 0.00 13.32 17,909
Size 8.13 8.01 1.67 1.74 13.65 71,246
Debt Ratio 0.27 0.26 0.21 0.00 4.28 71,246
Operating Margin Ratio -0.49 0.15 28.28 -4189.50 36.05 71,246
Capital Intensity 0.26 0.19 0.22 0.00 1.00 71,246
Intangible Assets 0.23 0.18 0.20 0.00 1.26 71,246

Note: 1-Year EDF, 5-Year EDF, 10-Year EDF, 5-Year CDS Spreads, Log(Scope 1) and Carbon Intensity are

winsorized at the bottom and top 5%. The number of observations varies depending on the data frequency:

EDF and EDF components (asset volatility, market value of assets, and default point), CDS spreads, and

ratings are monthly variables. Log(Scope 1), Carbon Intensity and Log(Current Sales) are reported at

the firm-year level (17,909 observations), and fundamentals are reported at the firm-quarter level (71,246

observations). See Table B1 for variables’ description and sources.
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Figure 1. EDF Trends by Absolute Emissions and Emission Intensity: Quintile and Time Series Compar-
isons

0

.5

1

1.5

ED
F 

(%
)

1 2 3 4 5
Quintile of absolute emissions

Mean 1-Year EDF(%) Mean 5-Year EDF(%) Mean 10-Year EDF(%)

(a) EDF by absolute emission

.2

.4

.6

.8

1

1.2

1-
Ye

ar
 E

D
F 

(%
)

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

1st Quintile Log(Scope 1) 5th Quintile Log(Scope 1)

(b) 1-Year EDF by quintiles of absolute emission
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(d) 1-Year EDF by quintiles of emission intensity

The figures present the average 1-Year EDF, 5-Year EDF, and 10-Year EDF by quintiles of absolute emissions

(a) and emission intensity (c), as well as the time series of the 1-Year EDF for the lowest and highest quintiles

of absolute emissions (b) and emission intensity (d). Emissions are measured as the logarithm of Scope 1

emissions, and emission intensity is defined as Scope 1 emissions divided by sales. Quintiles of emissions are

estimated within each year. Higher quintiles of emissions represent larger emitters. The EDF and emissions

are winsorized at the top and bottom 5%.
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Table 1 reports the summary statistics for the main variables in our analysis (see Table

B1 for an in-depth description of the variables used in the analysis). The average firm in our

sample has a 1-year probability of default of 0.37% and a debt ratio of 27%. As anticipated,

we observe a positive term structure of the EDF, where 10-year EDF has a higher mean and

lower standard deviation (1% and 0.79%) compared to the 5-year EDF (0.73% and 0.75%)

and the 1-year EDF (0.37% and 0.61%).

To explore how emissions relate to credit risk, Figures 1 (a) and (c) show the average

1-year, 5-year, and 10-year EDFs divided by quintiles of total direct emissions and emission

intensity, respectively. Figures 1 (b) and (d) display the time series of the 1-year EDF from

2008 to 2022 for the first and fifth quintiles.

In panel (a), we observe that firms in the upper quintiles (high emitters) tend to have

a lower probability of default than firms in the first quintile. This result is striking, as

it challenges the common expectation that the market penalizes firms with higher carbon

footprints. While a size effect could contribute to this descriptive evidence, the fact that this

effect persists over longer horizons, even when using carbon intensity in panel (c) —where

emissions are scaled by sales, inherently accounting for firm size— adds robustness to this

finding.

Turning to the time series, panel (b) reveals that the average 1-year EDF for firms in the

top (bottom) quintile significantly increased (decreased) after 2015. This aligns with previous

studies highlighting the substantial impact of the 2015 Paris Agreement on shaping investors’

and policymakers’ perceptions of firms’ risks (Bolton and Kacperczyk, 2021b; Carbone et al.,

2021; Capasso et al., 2020; Seltzer et al., 2022; Barth et al., 2022; Kölbel et al., 2024). A

two-sample t-test confirms that the average 1-year EDF for firms in the bottom quintile is

not statistically different from those in the top quintile between 2015 and 2021. However,

the difference becomes statistically significant again in 2022.

Panel (d) shows that for emission intensity, the EDFs of the first and fifth quintiles

become statistically indistinguishable as early as 2011. However, firms in the top quintile
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exhibit significantly higher risk in 2015, 2016, 2017, and 2020. The appendix (Figure A1)

provides a detailed view of all quintiles for both total direct emissions and emission intensity,

confirming similar trends over longer horizons.

4. Results

4.1. Carbon Intensity and Credit Risk

We begin by examining the relationship between carbon emissions and expected default

frequencies (EDFs) at 1-year, 5-year, and 10-year horizons. Our main variables of interest are

log(Scope 1) emissions and carbon intensity. Log(Scope 1) measures direct carbon emissions

from sources owned or controlled by the firm, while carbon intensity, calculated as Scope

1 carbon emissions over total sales, reflects a firm’s efficiency in managing carbon output

relative to its economic activity.

Table 2 summarizes the baseline relationship between emissions metrics and EDFs. In

detail, Columns (1) and (2) of Table 2 suggest a negative correlation between both absolute

emissions and emission intensity with default probability across all horizons. For every 1%

increase in absolute emissions, the 1-year EDF decreases by 0.0180 percentage points, while

the 5-year and 10-year EDFs decrease by 0.0550 and 0.103 percentage points, respectively.

Similarly, higher carbon intensity is associated with lower default probability in the medium

(5-year) and long term (10-year), by 0.23 and 0.049 percentage points respectively.

However, once firm-level controls and sector fixed effects are introduced in columns (3)

and (4) to account for firm fundamentals and within-sector variation, the results change

notably. In the full specification, the effect of absolute emissions becomes statistically in-

significant, while carbon intensity shows a positive and significant relationship with credit

risk. Specifically, a 1% increase in carbon intensity corresponds to increases of 0.016, 0.023,
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Table 2. Analysis using Emission Levels and Intensity

Panel A: 1-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.018*** 0.008
(0.004) (0.007)

Carbon Intensity -0.005 0.016**
(0.005) (0.007)

R2 0.11 0.10 0.19 0.19

Panel B: 5-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.055*** 0.014
(0.005) (0.009)

Carbon Intensity -0.023*** 0.023**
(0.008) (0.009)

R2 0.08 0.04 0.22 0.22

Panel C: 10-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.103*** 0.004
(0.006) (0.009)

Carbon Intensity -0.049*** 0.019**
(0.008) (0.009)

R2 0.15 0.04 0.34 0.34

Year FE Y Y Y Y
Country FE Y Y Y Y
Industry FE N N Y Y
Controls N N Y Y
Obs 213,555 213,555 213,555 213,555

Note: The table reports the regression of current log absolute emission and carbon intensity on EDF. The

controls included are size, debt ratio, operating margin, capital intensity, intangible assets, and current-year

log sales. EDF and emissions are winsorized at the bottom and top 5%. Standard errors in parentheses are

clustered at the firm level. Statistical significance is reported as * for p ă 0.10, ** for p ă 0.05 and *** for

p ă 0.01.
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and 0.019 percentage points in the 1-year, 5-year, and 10-year EDF, respectively.9 10

Taken together, these findings suggest that relative emissions, rather than absolute levels,

may have informational value in explaining credit risk—but this result is highly sensitive to

the treatment of extreme values. In particular, the apparent positive relationship between

carbon intensity and EDFs is not robust to alternative winsorization choices, raising caution

about interpreting it as evidence of a systematic link. To further investigate heterogeneity in

results, we perform a quantile regression analysis, as detailed in Table B3 in the appendix.

Columns (1) and (2) —without controls and fixed effects—show a negative correlation be-

tween emissions and EDFs. Once controls are included, the relationship turns positive. Fig-

ure A2 plots the coefficients across EDF quantiles (5th to 95th percentile) and shows that the

positive association becomes statistically significant only above the 60th percentile—i.e., for

firms with higher transition risk. This effect is more pronounced for emission intensity, while

the impact of total emissions remains generally weak and statistically insignificant across the

distribution. These results suggest that transition risk, as proxied by carbon intensity, may

matter more for firms with higher credit risk. Although a positive relationship is frequently

documented in the literature, we find that it holds predominantly for firms at the extreme

end of the emission intensity distribution, questioning the robustness of this finding across

the full sample.

Several factors could explain the observed non-significant or even negative relationship

between emissions and EDFs. First, high-emission firms often operate in carbon-intensive

industries with substantial entry barriers, economies of scale, and market power, potentially

9All variables are winsorized at the 5th and 95th percentiles in the baseline specification. Table B2 reports
results without winsorization. We observe that when sector and control variables are included, the positive
effect of carbon intensity disappears in the non-winsorized version suggesting that coefficients estimated in
Table 2 are largely driven by a small number of extreme observations in the upper tail of the carbon intensity
distribution.

10To address concerns that the observed results may be overstated due to the differing temporal dimensions
of EDF and Emissions, Table B13 presents the baseline estimates using EDF aggregated at the yearly level.
The results remain consistent under this alternative specification.
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reducing competitive pressure and default risk. Second, these firms might be more aware

of climate risks and take proactive mitigation measures, such as investing in low-carbon

technologies or diversifying activities. Third, the results in the full sample might be driven, at

least partially, by the presence of firms subject to different climate-related regulations, which

could affect the degree of integration of climate risks into credit risk for those firms. Fourth,

firms might benefit from implicit or explicit government subsidies or consumer tolerance

for carbon emissions, enhancing their cash flows and reducing default risk. We extend our

analysis to account for some of these explanations in detail later in the paper.

In the following section, we validate our findings using alternative measures of creditwor-

thiness, including Mean CDS Spreads, Moody’s Ratings, and CDS implicit ratings.

4.2. Other Measures of Credit Risk

To ensure comparability with previous studies, we replicate our initial analysis using

alternative measures of credit risk. We begin by examining the correlations between our

primary measure, the Expected Default Frequency (EDF), and other commonly used credit

risk variables. Table 3 presents the pairwise correlations among 1-year, 5-year, and 10-year

EDF; Mean CDS Spreads; Moody’s Ratings; and CDS Implied Ratings. All correlation co-

efficients are statistically significant at the 1% level. Notably, CDS Spreads exhibit strong

correlations with all other credit risk measures. Moody’s Ratings and CDS Implied Rat-

ings show particularly high correlations with the 10-year EDF (0.68 and 0.77, respectively),

although their correlations with the 1-year EDF are notably lower (0.51 for both).

Table 4 replicates our initial baseline specification with year, country, and sector fixed

effects, using alternative measures of credit risk. These measures include CDS spreads and

ratings from Moody’s and CDS-implied sources, where lower values of the rating variable

indicate better creditworthiness. It is important to highlight that this analysis is based on a

smaller sample size, comprising 205 firms with CDS spreads, 615 firms with Moody’s ratings,

and 343 firms with CDS-implied ratings.
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Table 3. Pairwise correlation of credit risk variables

Variables (1) CDS Spreads (2) Moody’s Ratings (3) CDS Implied Ratings (4) Y1-EDF (5) Y5-EDF (6) Y10-EDF
(1) CDS Spreads 1
(2) Moody’s Ratings 0.68*** 1
(3) CDS Implied Ratings 0.77*** 0.74*** 1
(4) Y1-EDF 0.65*** 0.51*** 0.51*** 1
(5) Y5-EDF 0.68*** 0.62*** 0.60*** 0.90*** 1
(6) Y10-EDF 0.65*** 0.66*** 0.62*** 0.75*** 0.94*** 1

Note: The table reports the pairwise correlation across 1, 5 and 10-year EDF, Mean CDS Spreads, Moody’s

Ratings and CDS Implied Ratings. Statistical significance are reported such as * for p ă 0.10, ** for p ă 0.05

and *** for p ă 0.01.

Table 4 shows that while absolute emissions exhibit no significant relationship with CDS

spreads or Moody’s ratings (though they correlate with CDS-implied ratings), carbon inten-

sity remains positively associated with all credit risk measures. This pattern suggests that

credit markets place greater emphasis on firms’ emission efficiency relative to their economic

output than on their absolute emission levels.

Table 4. Other measures of credit risk

Mean CDS Moody’s Ratings CDS implied Ratings

(1) (2) (3) (4) (5) (6)
Log(Scope 1) 3.913 0.074 0.232**

(3.325) (0.067) (0.113)

Carbon Intensity 8.840*** 0.140*** 0.288***
(2.909) (0.051) (0.077)

Year, Country & Industry FE Y Y Y Y Y Y
Obs 34,159 34,159 82,848 82,848 43,205 43,205
R2 0.35 0.37 0.49 0.49 0.32 0.34

Note: The controls included are size, debt ratio, operating margin, capital intensity, intangible assets, and

current-year log sales. The Mean CDS, Log(Scope 1) and Carbon Intensity are winsorized at the bottom

and top 5%. The sample spans the years from 2008 to 2022, including 205 firms with CDS spreads, 615 firms

with Moody’s ratings, and 343 firms with CDS-implied ratings. Standard errors in parentheses are clustered

at the firm level. Statistical significance are reported such as * for p ă 0.10, ** for p ă 0.05 and *** for

p ă 0.01.

Interestingly, the positive relationship with credit risk only appears when emissions are

considered in relation to economic activity (carbon intensity) rather than in absolute terms,
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similar to Carbone et al. (2021) and Blasberg et al. (2021). This observation supports our

earlier findings, but also highlights a potential issue with market incentives. The main goal

should be to reduce absolute emissions, not just improve relative efficiency.

To investigate whether the Paris Agreement influenced this paradigm by prioritizing abso-

lute emission reduction for both governments and companies, the following section examines

how the relationship between emissions and expected default frequency evolves annually

throughout our sample period.

4.3. Time Dynamics of Transition and Credit Risk

The 2015 Paris Agreement marks a significant turning point in collective awareness of

climate risks. We investigate whether the effect of emissions on credit risk changes around

this period, motivated by Figures 1 (b) and (d), which show a structural change in 1-year

EDFs between top and bottom emission quintiles after 2015. Following the methodology of

Acharya et al. (2022), we estimate:

EDFi,t “ γi`γt`
2022
ÿ

y“2009

IyrβyEmissioni,t`θyRatingi,ts`βEmissioni,t`θRatingi,t`θXi,t`ϵit (2)

The dependent variables are the 1-year, 5-year, and 10-year EDFs for firm i at time t. The

coefficients of interest, βy, capture the year-by-year sensitivity of EDF to Emissions—both

absolute and relative (intensity)— compared to the base year 2008. We control for credit

quality by including Moody’s ratings interacted with year indicators and add firm character-

istics, including size, debt ratio, operating margin ratio, capital intensity, intangible assets,

and log current-sales. The specification includes firm and year fixed effects, with standard

errors clustered at the firm level.

Figure 2 shows the interaction coefficients between log(Scope 1) emissions, carbon inten-

sity, and time (using 2008 as the baseline year), along with their 95% confidence intervals.

For all EDF horizons, the coefficients are generally insignificant before 2015, with the ex-

ception of the 1-year EDF and emission intensity (Figure b), which displays a positive trend
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Figure 2. EDF change around the Paris Agreement
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(a) 1-Year EDF & Absolute Emission
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(b) 1-Year EDF & Carbon Intensity
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(c) 5-Year EDF & Absolute Emission

-.02

0

.02

.04

.06

5-
Ye

ar
 E

D
F

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

(d) 5-Year EDF & Carbon Intensity
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(e) 10-Year EDF & Absolute Emission

-.02

0

.02

.04

.06

10
-Y

ea
r E

D
F

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

(f) 10-Year EDF & Carbon Intensity

Note: the figure presents yearly interaction coefficients of absolute emissions (left column) and carbon

intensity (right column) with 1-year, 5-year, and 10-year EDFs. The base year is 2008. Coefficients are

estimated using firm and year-fixed effects, with 95% confidence intervals displayed.
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beginning in 2011. However, we observe a marked shift after 2015, with coefficients becoming

strongly positive and significant across all horizons before declining in the last three years

of the sample.11

The evidence suggests that economic actors internalized implicit climate risk costs follow-

ing the Paris Agreement, either through direct emission reduction commitments or higher

pollution costs imposed by signatory countries. Tables B4 and B5 in the Appendix show the

coefficients for absolute emissions and emission intensity increase substantially in magnitude

and significance after 2015, nearly doubling in 2016 across all EDF horizons. Although these

effects remain significant in subsequent years, they gradually decrease, possibly reflecting

uncertainty about the agreement’s implementation.

We propose two possible non-mutually exclusive interpretations of these findings. First,

the Paris Agreement signaled heightened expectations of future carbon regulation and tax-

ation, potentially increasing costs and reducing revenues for high-emission firms, thereby

raising their default risk. Second, the Agreement may have shifted stakeholder preferences,

reducing demand for high-emission firms while boosting support for low-carbon alternatives,

creating a divergence in default risk profiles.

To further investigate the relationship between carbon emissions and credit risk, the

next section decomposes the Expected Default Frequency (EDF) into its key structural

components and examines the impact of emissions on each. This component-level analysis

enables us to identify the channels through which carbon emissions influence firms’ credit

risk, thereby shedding light on the underlying drivers of the observed aggregate effect.

11Since the regression includes Moody’s ratings to control for credit risk across firms, the sample size is
smaller than that used in section 4.1, as only 615 firms have ratings. Figures A3 (which do not include
ratings) reveal an even larger effect, showing that higher emitters exhibit greater credit risk compared to
lower emitters as early as 2011, relative to 2008. This difference continues to grow until 2015, after which it
stabilizes.
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4.4. Mechanisms: EDF Components

The EDF measures the probability of a firm defaulting over a certain time horizon. It

is computed as the probability that the value of the firm falls below a certain threshold (its

liabilities payable, also defined as the default point) within a certain time, using an extended

version of the Merton (1974) model. Standard EDFs incorporate balance sheet data and

market data, thus they tend to express a “market based” default frequency over a given

horizon. Three primary components determine a firm’s EDF: asset volatility, market value

of assets, and the default point. The model employs an iterative approach to simultaneously

estimate the value of the assets and their volatility. Once these are determined, the distance

to default (DTD) is calculated as the number of standard deviations separating the current

value of the assets from the default point; the default point is an estimate of the level of the

market value of a company’s assets below which the firm would fail to make scheduled debt

payments. Finally, the DTD is converted into a PD using a cumulative normal distribution

and then calibrated using Moody’s historical default data to obtain the EDF.

To understand how transition risks influence EDF, we begin by examining how each EDF

component contributes to the overall default probability. Using a series of OLS regressions,

we assess the role of these components in explaining variations in EDF. While this approach

simplifies the complex relationships underlying EDF dynamics, it provides valuable insights

into the channels through which carbon emissions may affect credit risk. The resulting

coefficients can be interpreted as the relative weights of each component in explaining EDF

variability.

Table 5 presents the estimated coefficients from a series of regressions analyzing the

individual effects of each EDF component. Columns (1) to (3) include each component

separately, revealing that all coefficients are highly significant. Asset volatility exhibits

a strong positive association with EDF. Conversely, higher market values of assets and

default points are associated with lower EDF. While the sign of the market value of assets

aligns with theoretical expectations—since larger asset values act as a buffer against financial
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Table 5. The weights of EDF’s Components

1-Year EDF 1-Year EDF 5-Year EDF 10-Year EDF

(1) (2) (3) (4) (5) (6)
Asset Volatility 0.015*** 0.044*** 0.062*** 0.067***

(0.001) (0.002) (0.002) (0.002)

Log(Market Value) -0.111*** -0.628*** -0.864*** -0.836***
(0.007) (0.022) (0.026) (0.022)

Log(Default Point) -0.016*** 0.612*** 0.787*** 0.688***
(0.006) (0.022) (0.026) (0.022)

Constant 0.032 1.320*** 0.479*** 0.465*** 1.213*** 1.878***
(0.030) (0.062) (0.043) (0.066) (0.086) (0.093)

Obs 213,555 213,555 213,555 213,555 213,555 213,555
R2 0.15 0.19 0.12 0.50 0.60 0.66

Note: The dependent variable is the 1-Year EDF in columns 1 to 4, the 5-Year EDF in column 5, and the

10-Year EDF in column 6. All variables are winsorized at the top and bottom 5%. The regressions do not

include fixed effects or additional controls. Standard errors in parentheses are clustered at the firm level and

statistical significance is reported as * for p ă 0.10, ** for p ă 0.05 and *** for p ă 0.01.

distress—the negative coefficient on the default point is more difficult to interpret. A higher

default point should, in principle, imply a higher likelihood of default, and thus the negative

coefficient in column (3) may reflect omitted variable bias due to the exclusion of asset

volatility and market value.

We therefore focus on columns (4) to (6), where all EDF components are included jointly.

Across all specifications, asset volatility is positively and significantly associated with EDF,

with coefficient magnitudes increasing with the time horizon. For example, the coefficient

on asset volatility rises from 0.044 in column (4) for the 1-Year EDF to 0.067 in column

(6) for the 10-Year EDF. The market value of assets remains negatively and significantly

associated with EDF, capturing the role of firm size and financial strength in reducing default

probability. The magnitude of this effect is relatively stable across maturities. The default

point, which proxies for a firm’s debt obligations or leverage, displays a horizon-dependent

relationship with EDF. In the 1-Year EDF specification (column 4), the coefficient is 0.612,
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while for longer horizons (columns 5 and 6), the coefficient increases substantially, indicating

that as the default point rises, so does the likelihood of default—consistent with theoretical

expectations.

Table 6. Pre and Post Paris Agreement for EDF Component

Asset Volatility Log(Market Value of Assets) Log(Default Point)

(1) (2) (3) (4) (5) (6)
Log(Scope 1) -0.577*** -0.040*** 0.010*

(0.076) (0.008) (0.005)

PA*Log(Scope 1) 0.100*** -0.010*** 0.010***
(0.038) (0.004) (0.003)

Carbon Intensity -0.163** -0.013** 0.006
(0.065) (0.006) (0.004)

PA*Carbon Intensity 0.051 -0.013*** 0.009***
(0.044) (0.004) (0.003)

Year, Country and Industry FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
N 213,555 213,555 213,555 213,555 213,555 213,555
R2 0.65 0.64 0.88 0.88 0.95 0.95

Note: the dependent variables are Asset Volatility, Market Value of Assets, and Default point. The table

reports coefficients for Log(Scope 1) and Carbon Intensity, and their interaction with the Paris Agreement

(PA) indicator (i.e. taking value 1 after 2015). Emissions and EDF components are winsorized at the top

and bottom 5%. The controls included are size, debt ratio, operating margin, capital intensity, intangible

assets, and current-year log sales. The fixed effects (FE) included are Year, Country and Sector FE. Standard

errors in parentheses are clustered at the firm level. Statistical significance is reported as * for p ă 0.10, **

for p ă 0.05 and *** for p ă 0.01.

We then use the EDF components to identify the channels through which carbon emis-

sions affect EDF. Table 6 presents regression estimates where each EDF component is re-

gressed on carbon emissions and carbon intensity variables, with interactions for the Paris

Agreement (PA) indicator to capture potential structural shifts post-PA (i.e. this indicator

takes value one after 2015).

The results show that before 2015 higher emissions correlate with lower asset volatil-

ity. Following the Paris Agreement, high emitting firms experience a significant increase
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in asset volatility. This shift likely reflects heightened uncertainty and market repricing of

carbon-intensive firms due to the anticipated regulatory, market, and operational adjust-

ments needed to align with climate targets.

For the other two EDF components —market asset value and default point- the results

indicate that higher emissions are associated with lower asset values and higher default

points. These effects are amplified post-Paris Agreement, where high emitters experience

relatively lower asset values and even higher default points compared to before 2015. The

effect on firm value is consistent with theoretical expectations, particularly under scenarios

where carbon-intensive firms face an increased risk of stranded assets (Bolton et al., 2020).

To quantify these effects, we compute the marginal contribution of emissions to EDF

through each component. The results suggest that asset volatility is the most influential

channel. For a one-standard-deviation increase in asset volatility, the associated rise in EDF

attributable to emissions is 0.0374 percentage points. By comparison, the corresponding

marginal effects through market value and the default point are 0.0092 and 0.0105 percentage

points, respectively.12

A similar pattern holds when carbon intensity is used instead of absolute emissions.

However, the relationship between carbon intensity and EDF components—particularly asset

volatility—appears weaker in the post-2015 period. This is consistent with the interpretation

that the Paris Agreement shifted investor and regulatory attention toward firms’ absolute

emissions rather than their emissions efficiency.

To gain a deeper understanding of the drivers behind the increased EDF for high emitters,

we replicate the specification from Acharya et al. (2022) to control for variations in firm credit

risk and track the evolution of this effect over time. In this context, we plot the difference

12These effects are calculated as the product of the estimated coefficient capturing the impact of emissions
on each structural component of the EDF —namely, asset volatility, market value, and the default point—
and the corresponding coefficient of each component on the EDF. The resulting values represent the marginal
contribution of emissions to EDF through each channel, evaluated at a one-standard-deviation increase in
the respective component.
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Figure 3. Difference in EDF Components Between Top and Bottom Emission Quintiles
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(b) Asset Volatility & Carbon Intensity

-.8

-.6

-.4

-.2

0

.2

M
ar

ke
t V

al
ue

 A
ss

et
s

20
09

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

(c) Log(Market Value Assets) & Absolute
Emission

-.4

-.3

-.2

-.1

0

.1

M
ar

ke
t V

al
ue

 A
ss

et
s

20
09

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

(d) Log(Market Value Assets) & Carbon
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(e) Log(Default Point) & Absolute Emission
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(f) Log(Default Point) & Carbon Intensity

Note: the figure presents differences in EDF components (asset volatility, market value of assets, and default

point) between firms in the top and bottom quintiles of emissions. Panels compare absolute emissions (left

column) and carbon intensity (right column), with estimates including country, sector and year-fixed effects.

The 95% confidence intervals are also displayed.
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between the top quintile and the bottom quintile of emissions, both for absolute emissions

and intensity.

EDF Componenti,t “ γi ` γt `

2022
ÿ

y“2009

Iy
“

βy1pTop Quintile Emissionqi,t ` θyRatingi,t
‰

`θRatingi,t ` θXi,t ` ϵi,t

(3)

Figure 3 illustrates changes in EDF components by comparing firms in the highest and

lowest quintiles of emissions. The findings show that asset volatility increased for firms in

the highest quintile of absolute emissions between 2016 and 2018, though this effect appears

to dissipate in subsequent years. For carbon intensity, a sharp increase is observed as early

as 2011, which helps explain the results presented in Table 6 and aligns with the idea that

emissions efficiency was more relevant before the Paris Agreement. In terms of market value,

a notable decline is observed in 2015 and after 2019 for firms with high absolute emissions.

For default points, neither total direct emissions nor emission intensity exhibit meaningful

changes.13

Overall, we document the impact of emissions on firms’ default probability by isolating

their effects on each EDF component. The next section examines how emissions affect EDFs

differently across jurisdictions —specifically, the United States, European Union, and Great

Britain— leveraging cross-country variation in policy and regulatory implementation.

13Figure A4 presents the effects on market value of assets and default point in levels. The contrasting
results relative to the log specification arises from the strong skewness in the distribution of both variables.
High emitters tend to have higher absolute levels. Consequently, level regressions may mask the relative
underperformance of high emitters in percentage terms after the Paris Agreement —a pattern consistent
with increased market penalization of emissions.
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4.5. Geographic Areas

In this section, we examine whether a firm’s geographical location influences the rela-

tionship between climate and credit risk. Regional differences in the impact of transition

risk on credit risk are well-documented. Evidence discussed in the literature suggests that

jurisdictions with stricter regulations tend to experience heightened effects of transition risks

on credit outcomes (see, for example, (Seltzer et al., 2022) for U.S. firms).

Table 7 presents estimated coefficients for the United States, Euro Area, and Great

Britain across three EDF horizons. All specifications include firm-level controls, as well as

year and sector fixed effects. Country fixed effects are included only for firms within the

European Union, where multiple countries are represented.

The results reveal distinct regional patterns across all horizons. For the United States,

no statistically significant correlation is found between emissions and EDF. In contrast, Eu-

ropean Union firms exhibit a significant positive correlation between both absolute emissions

and emission intensity and EDF, consistent with the findings of Capasso et al. (2020). In the

United Kingdom, absolute emissions are positively and significantly associated with EDF,

but no significant relationship is observed for emission intensity.

Regional heterogeneity in the credit impact of climate risk likely stems from policy differ-

ences, such as the EU’s established Emission Trading Scheme compared to the historically

fragmented approach in the US, highlighting differences in the regulatory and market land-

scapes faced by firms across these regions. For instance, the EU ETS trading system, estab-

lished in 2005, imposes heightened credit risks on large polluters by capping total emissions

and penalizing excess pollution. By comparison, the United States operates only limited

cap-and-trade systems, restricted to a few states. The disparate results likely reflect varying

levels of regulatory commitment and enforcement, as well as heterogeneous firm responses

to climate-related pressures and market signals.

In the appendix, we test how policy stringency affects credit risk. Table B8 reports results

for the interaction of monthly carbon price surprises measured as the euro change in carbon
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Table 7. Results by Geographical Location

Panel A: 1-Year EDF

Country US EU UK

(1) (2) (3) (4) (5) (6)

Log(Scope 1) -0.009 0.020* 0.023*
(0.010) (0.011) (0.014)

Carbon Intensity 0.008 0.025*** 0.013
(0.011) (0.009) (0.015)

Obs 125,075 125,075 62,875 62,875 25,605 25,605
R2 0.21 0.21 0.22 0.23 0.25 0.25

Panel B: 5-Year EDF

(1) (2) (3) (4) (5) (6)
Log(Scope 1) -0.012 0.032** 0.036*

(0.013) (0.015) (0.020)
Carbon Intensity 0.010 0.038*** 0.013

(0.014) (0.013) (0.022)
Obs 125,075 125,075 62,875 62,875 25,605 25,605
R2 0.24 0.24 0.25 0.26 0.31 0.31

Panel C: 10-Year EDF

(1) (2) (3) (4) (5) (6)

Log(Scope 1) -0.021 0.023 0.017
(0.014) (0.015) (0.019)

Carbon Intensity 0.005 0.034*** 0.009
(0.015) (0.012) (0.022)

Year, Country and Sector FE Y Y Y Y Y Y
Control Y Y Y Y Y Y
Obs 125,075 125,075 62,875 62,875 25,605 25,605
R2 0.36 0.35 0.38 0.38 0.49 0.49

Note: The controls included are size, debt ratio, operating margin, capital intensity, intangible assets, and

current-year log sales. The sample spans the years from 2008 to 2022. The dependent and independent

variables are winsorized at the bottom and top 5%. Standard errors in parentheses are clustered at the firm

level. Statistical significance is reported as * for p ă 0.10, ** for p ă 0.05 and *** for p ă 0.01.
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price relative to prevailing wholesale electricity prices (Känzig, 2023). We set the carbon

price surprise to one if there is a positive carbon price shock in a given month and zero

otherwise. Since the EU ETS trading scheme operates exclusively in Europe, this analysis

is restricted to that geographical area.14

Column (1) shows that companies with higher absolute emissions face increased credit risk

during months with carbon price surprises. No statistically significant effects are observed for

other horizons, which is expected as the variable is measured daily and aggregated monthly,

making the effect short-term in nature. Furthermore, the results appear specific to absolute

emissions rather than emission intensity, aligning with the structure of the EU ETS that

enforces a fixed cap on total emissions, primarily penalizing absolute emissions rather than

emission intensity.

5. Robustness

We begin by assessing the sensitivity of our results to data preprocessing choices by

varying the winsorization threshold. We then conduct a broader set of robustness checks

to evaluate the stability of our findings. Specifically, we examine the relationship between

credit risk and multiple proxies for transition risk, incorporating Trucost’s carbon earnings-

at-risk metric and the announcement of science-based targets to better capture the forward-

looking dimension of climate transition exposure. As part of our robustness strategy, we

also re-estimate the EDF decomposition using an alternative methodology based on Struc-

tural Equation Modeling (SEM). Furthermore, we replicate the analysis across several sub-

samples, segmented by credit ratings, sectoral greenness, and public ownership status.

14Note that we use the carbon price surprise as a shock variable because the implementation of the EU
ETS in 2005 predates our dataset, the second phase in 2008 coincides with our first year, and the third phase
in 2013 is very close to the Paris Agreement.
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Varying winsorization threshold. To ensure that our results are not unduly influenced by

large issuers or extreme observations that could distort the relationship between emissions

and credit risk, we apply a 5% winsorization in the main analysis. This approach limits

the impact of outliers and helps to reveal underlying patterns in the data. To verify the

robustness of our findings to this choice, we replicate the analysis using a stricter 1% win-

sorization. The core results remain broadly consistent across both thresholds, confirming

that our conclusions are not driven by a small set of extreme values. The only meaningful

difference appears in the exploratory analysis of carbon intensity, where statistical signifi-

cance weakens under the 1% threshold—suggesting that the previously observed effect may

be attributable to a handful of extreme observations. Other key results, including those

related to EDF levels, ratings, and regional variation, remain stable under both winsoriza-

tion choices, reinforcing the credibility of our empirical findings. All tables underlying this

robustness check are available from the authors upon request, but are not reported in the

paper to conserve space.

Forward Looking Risk. we replicate the analysis using carbon earnings-at-risks from Trucost.

Carbon earnings-at-risk measure the additional financial cost that a company could face

due to possible future carbon pricing. This is calculated for each firm based on its sector,

operations, and a given price policy scenario (low, medium, and high). 15 For our analysis,

we use the firm’s carbon earnings-at-risks as a percentage of EBITDA, forecasted for the

year 2030. Given data availability, we only have yearly data from 2017 to 2022. We choose

the 2030 earnings-at-risk horizon because it allows us to exploit the 10-year EDF, both

representing long-term risk. This allows us to investigate whether the EDF incorporates

forward-looking transition risks. Given the sample period (2017 to 2022) and a shift in

behavior after 2015, we expect carbon earnings-at-risk to be reflected in EDFs.

15See https://www.spglobal.com/en/Perspectives/IIF-2019/Trucost-Carbon-Earnings-at-Risk.pdf for
more details.
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Table 8. Forward Looking Transition Risk

1-Year EDF 5-Year EDF 10-Year EDF

(1) (2) (3) (7) (8) (9) (13) (14) (15)

Log(Scope 1) 0.004 0.005 0.004 0.012 0.013 0.013 0.001 0.002 0.002
(0.007) (0.007) (0.007) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

FWR Low 0.042** 0.057** 0.051**
(0.019) (0.024) (0.022)

FWR Medium 0.006*** 0.008*** 0.007***
(0.001) (0.002) (0.002)

FWR High 0.004*** 0.005*** 0.005***
(0.001) (0.001) (0.001)

R2 0.17 0.17 0.17 0.22 0.22 0.22 0.32 0.32 0.32

1-Year EDF 5-Year EDF 10-Year EDF

(1) (2) (3) (7) (8) (9) (13) (14) (15)
Carbon Intensity 0.014* 0.015* 0.015* 0.023** 0.024** 0.024** 0.020* 0.021* 0.021*

(0.008) (0.008) (0.008) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
FWR Low 0.039*** 0.052*** 0.045***

(0.015) (0.018) (0.015)
FWR Medium 0.005*** 0.007*** 0.007***

(0.001) (0.002) (0.001)
FWR High 0.004*** 0.005*** 0.004***

(0.001) (0.001) (0.001)
Year, Country and Industry FE Y Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y Y
Obs 54,319 54,319 54,319 54,319 54,319 54,319 54,319 54,319 54,319
R2 0.18 0.18 0.18 0.22 0.22 0.22 0.32 0.32 0.32

Note: The controls included are size, debt ratio, operating margin, capital intensity, intangible assets, and

current-year log sales. The sample spans the years from 2017 to 2022. FLR stands for Forward-Looking Risk

calculated as the additional financial cost that a company could face due to possible future carbon pricing.

The log(Scope 1) and 10-Year EDF variables are winsorized at the bottom and top 5%. Standard errors in

parentheses are clustered at the firm level * for p ă 0.10, ** for p ă 0.05 and *** for p ă 0.01.
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Table 8 shows a positive correlation between EDF and forward-looking transition risks

(FLR) across all policy scenarios (low, medium, and high). In other words, firms facing

higher future carbon pricing or regulatory pressures are associated with increased default

risk. In Panel A, which uses Scope 1 emissions, the results show no statistically signifi-

cant relationship with EDF, suggesting that absolute emissions alone do not fully capture

forward-looking transition risks. In contrast, Panel B, which examines carbon intensity, re-

veals a consistently though weakly significant correlation with EDF. This effect holds across

all FLR scenarios, suggesting that firms with higher carbon intensity are less efficient in

their operations and more exposed to potential regulatory costs and market shifts aimed

at reducing carbon footprints. In other words, the significant relationship we find between

forward-looking earnings-at-risk and EDFs indicates that markets, at least partially, inter-

nalize future carbon-related earnings shocks into credit risk evaluations, providing direct

evidence of investors’ forward-looking climate risk pricing.

Science-based targets. A crucial aspect of transition risk involves firms’ voluntary commit-

ments to reduce their emissions. Science-based targets provide companies with a clear

roadmap for cutting greenhouse gas emissions, aligned with the latest climate science and

the goals of the Paris Agreement, while supporting sustainable business growth. The Science

Based Targets Initiative (SBTi) includes 5,246 firms that have disclosed targets between 2014

and 2023; however, ISINs are available for only 2,084 of these firms.16 After matching on

ISIN and restricting the sample to firms with data available for the three months before and

after the target publication, we retain 336 firms, 77% of which disclosed their targets after

2020. Geographically, 43% are based in the EU, 35% in the US, and 21% in the UK.

We exploit the timing of the actual publication of the targets to assess the effect on credit

risk. To this end, we estimate a version of equation 2, now using firm and month-year fixed

effects to absorb time shocks, and define the month prior to publication as the reference

16https://sciencebasedtargets.org/target-dashboard
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period. We do not include credit ratings’ controls due to the already limited sample size.

Table 9 presents the estimated coefficients of the interaction of emission, either absolute

emissions (columns 1–3) or carbon intensity (columns 4–6), with time indicators. The es-

timates suggest that large emitters who set science-based targets experience a temporary

reduction in EDF following the announcement. This effect is statistically significant for

the 5-year and 10-year EDF, but fades within one to two months—indicating a short-lived

response.

EDF decomposition: SEM. As a further robustness check, we explore the decomposition of

EDF using Structural Equation Modeling (SEM). The variables employed in our decom-

position are, by construction, key determinants of EDF and are inherently interrelated.

Our baseline approach allows us to examine how carbon emissions influence EDF indirectly

through its components. However, SEM offers a complementary framework by estimating

all structural equations simultaneously and explicitly accounting for the correlations among

them. This approach enables a more integrated understanding of how carbon-related vari-

ables propagate through the determinants of credit risk. The results from this alternative

methodology confirm the main findings presented in the paper. Specifically, the indirect

effects of emissions and carbon intensity on EDF remain statistically significant and direc-

tionally consistent with our baseline results. For transparency and completeness, we report

the key outputs from the SEM analysis in Appendix Appendix B (Tables B6-B7), which

present the estimated effects of carbon variables on EDF through its components. Full es-

timation tables are available upon request. These results reinforce the robustness of our

conclusions to the choice of decomposition method.

Other measures of transition risk. Our analysis considers absolute emission levels (i.e. the

long-term effect of carbon emissions) and carbon intensity (i.e. emissions relative to sales).

For robustness, we replicate our initial analysis by incorporating the rate of change in carbon

emissions and intensity (i.e. the short-term effect of emissions) in Table B9 and lagged values
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Table 9. Changes in EDF Around Science-Based Target Announcement

Log(Scope 1) Carbon Intensity

1 Year EDF 5 Year EDF 10 Year EDF 1 Year EDF 5 Year EDF 10 Year EDF
(1) (2) (3) (4) (5) (6)

Emission 0.028˚ 0.004 -0.021˚ 0.001 0.008 0.007
(0.015) (0.014) (0.013) (0.013) (0.011) (0.008)

Emission × 3M Before -0.004 -0.002 -0.000 0.001 -0.001 0.000
(0.004) (0.003) (0.003) (0.005) (0.003) (0.002)

Emission × 2M Before -0.006˚ -0.004 -0.002 -0.007˚˚ -0.004 -0.003
(0.003) (0.003) (0.002) (0.003) (0.003) (0.002)

Emission × Event Month -0.005 -0.006˚˚ -0.005˚˚ -0.003 -0.005˚˚˚ -0.006˚˚˚

(0.003) (0.002) (0.002) (0.006) (0.002) (0.002)

Emission × 1M After -0.007 -0.006˚ -0.005˚ -0.006 -0.006˚˚ -0.006˚˚

(0.004) (0.003) (0.003) (0.007) (0.003) (0.003)

Emission × 2M After -0.007 -0.006 -0.004 -0.005 -0.004 -0.004˚

(0.005) (0.004) (0.003) (0.007) (0.003) (0.002)

Emission × 3M After -0.006 -0.003 -0.002 -0.003 -0.003 -0.004
(0.006) (0.005) (0.004) (0.010) (0.007) (0.006)

Month*Year FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
Obs 2,349 2,349 2,349 2,349 2,349 2,349
R2 0.88 0.96 0.98 0.88 0.96 0.98

Note: The controls included are size, debt ratio, operating margin, capital intensity, intangible assets, and

current-year log sales. The sample covers the period from 2017 to 2022. Emissions are measured as log(Scope

1) in columns 1–3 and as Carbon Intensity in columns 4–6. The reference month is the month before the

firm publicly announces a science-based target. The log(Scope 1) and 10-Year EDF variables are winsorized

at the 5th and 95th percentiles. Standard errors, clustered at the firm level, are reported in parentheses.

Standard errors in parentheses are clustered at the firm level * for p ă 0.10, ** for p ă 0.05 and *** for

p ă 0.01.
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in Table B10 (i.e. the temporal effect of emissions).

Table B9 in the appendix indicates that in the short-term, the carbon intensity coefficient

remains positive but its effect on EDFs is not significant, as observed in the initial analysis.

On the other hand, an increase in the rate of change of absolute carbon emissions today

leads to a lower EDF in the short term, particularly for the 1-year horizon. This finding is

consistent with expectations, as short-term changes in absolute emissions are closely linked

to short-term credit risk and serve as a proxy for shifts in economic activity, which typically

correspond to a lower risk of bankruptcy. In contrast, emission efficiency, as measured by

carbon intensity, does not affect significantly short-term credit risk.

In Table B10, we replicate the baseline model using one-year lagged values for Scope 1

emissions and carbon intensity to deal with lagged information of emission (Zhang, 2025).

The results show that carbon intensity coefficient is positive and statistically significant

across all three horizons. Conversely, while the coefficients for absolute emissions are positive,

we do not find a significant relationship between absolute emissions and EDFs for the 1-year

and 10-year horizons. Nonetheless, there is a weakly significant positive effect on 5-year

EDFs.

Breakdown by ratings, sector and public ownership. Tables B11 and B12 look at possible

effects driven by Moody’s credit ratings, the ”greenness” of the sector, and whether a Gov-

ernment entity holds a majority stake in the company. We categorize firms with investment-

grade ratings (from Aaa to Baa3) as “good rating” firms, and those with ratings below

investment grade (Baa1 to Caa3) as “bad rating” firms.

The results reveal a negative association between absolute emissions and EDFs across all

three horizons for investment-grade firms, where higher emissions is significantly associated

to lower EDFs at the 1% level. In contrast, no statistically significant relationship is observed

between credit risks and a firm’s classification as belonging to a “green” or “brown” sector

except for a weak positive effect of emissions on EDFs for firms in the most polluting sectors.

42



This indicates that sector-wide environmental attributes do not substantially influence EDF

in this context, possibly reflecting heterogeneity in regulatory pressures or operational effi-

ciency.17 Finally, among firms with majority government ownership, emissions are positively

associated with credit risk. This finding suggests that public ownership introduces dynamics

that amplify the perceived risks of emissions. Potential explanations include inefficiencies

in publicly managed operations, heightened regulatory exposure, or market expectations of

government accountability for environmental performance.

Interestingly, when focusing on emissions intensity, we observe a similar effect for public

ownership, which indeed reflect the fact that public ownership amplifies the financial risks

associated to higher emissions, regardless of whether the metric is measured in absolute or

intensity terms. We do not find any effect for rating, whether investment-grade or non-

investment-grade. Finally, in the case of carbon emissions, sectoral differences in emissions

intensity present a more differentiated picture. Firms in “brown” industries are associated

with a higher probability of default for all EDF horizons. Conversely, firms in green industries

remain mostly insulated from such risks.

6. Conclusions

We employ a comprehensive yet straightforward approach to estimate the effect of carbon

emissions on credit risk. In our initial analysis, we test the relationship between absolute

emissions and carbon intensity with EDFs. We find some evidence that carbon intensity is

positively associated with EDFs, consistent with previous studies, although this relationship

is sensitive to specification choices and driven largely by upper-tail observations. Neverthe-

less, our analysis identifies the Paris Agreement as a pivotal structural break, significantly

increasing the sensitivity of firms’ default risks to absolute emissions. Specifically, post-

17Green industries include consumer discretionary, consumer staples, healthcare, and telecommunications;
brown industries include utilities, energy, and materials sectors.
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2015, firms with high total direct emissions became riskier, primarily due to increased asset

volatility.This finding highlights the importance of international climate agreements as cata-

lysts for market perception shifts and evolving market expectations related to climate policy

developments

We also provide evidence that a firm’s geographical location influences the relationship

between climate risk and credit risk. Regional differences in the impact of transition risk

on credit outcomes are well-documented, and our findings align with prior expectations.

US firms exhibit different relationships compared to EU firms, reflecting their divergent

approaches to climate mitigation policies and carbon emissions regulation.

Finally, we document how firm-level heterogeneity affects the estimated relationship. We

find that the impact of emissions on credit risk is stronger for high emitters, firms in “brown”

sectors, and those with substantial public ownership.

In summary, our study provides empirical evidence that climate transition risks have be-

come increasingly influential in shaping corporate default probabilities, particularly following

the Paris Agreement. We show that absolute emissions became significantly correlated with

EDFs after the Agreement, primarily through increased asset volatility. While our reduced-

form approach does not allow precise quantification of the magnitude of these effects, we

believe it offers important insights into how transition risks impact financial stability. Future

work could quantify these impacts more precisely by employing structural models. Despite

its simplifying assumptions, our analysis provides novel and insightful implications for both

academics and policymakers.
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Carbone, S., Giuzio, M., Kapadia, S., Krämer, J. S., Nyholm, K. and Vozian, K. (2021),

‘The low-carbon transition, climate commitments and firm credit risk’, ECB Working

Paper No. 2631 .

Devalle, A., Fiandrino, S. and Cantino, V. (2017), ‘The linkage between esg performance

and credit ratings: A firm-level perspective analysis’, International Journal of Business

and Management 12(9), 1–53.

Di Virgilio, S., Faiella, I., Mistretta, A. and Narizzano, S. (2023), ‘Assessing credit risk

sensitivity to climate and energy shocks’, Banca d’Italia Working Paper .

Gao, F., Li, Y., Wang, X. and Zhong, Z. K. (2021), ‘Corporate social responsibility and the

term structure of cds spreads’, Journal of International Financial Markets, Institutions

and Money 74, 101406.

Giglio, S., Kelly, B. and Stroebel, J. (2021), ‘Climate finance’, Annual Review of Financial

Economics 13, 15–36.

Hartzmark, S. M. and Shue, K. (2022), ‘Counterproductive sustainable investing: The impact

elasticity of brown and green firms’, Available at SSRN 4359282 .

Henisz, W. J. and McGlinch, J. (2019), ‘Esg, material credit events, and credit risk’, Journal

of Applied Corporate Finance 31(2), 105–117.
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Appendix A. Appendix Figures

Figure A1. Time-series EDF by quintiles of total emissions and emission intensity
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Figure A2. Analysis using Quantile Regression

-.05

0

.05

.1

Es
tim

at
ed

 E
ffe

ct
 o

n 
ED

F

0 20 40 60 80 100

Total Emission Quintiles

(a) 1-Year EDF & Total Emission

0

.05

.1

.15

Es
tim

at
ed

 E
ffe

ct
 o

n 
ED

F

0 20 40 60 80 100

Emission Intensity Quintiles

(b) 1-Year EDF & Carbon Intensity

-.05

0

.05

.1

.15

Es
tim

at
ed

 E
ffe

ct
 o

n 
ED

F

0 20 40 60 80 100

Total Emission Quintiles

(c) 5-Year EDF & Total Emission

0

.05

.1

.15

Es
tim

at
ed

 E
ffe

ct
 o

n 
ED

F

0 20 40 60 80 100

Emission Intensity Quintiles

(d) 5-Year EDF & Carbon Intensity

-.05

0

.05

.1

Es
tim

at
ed

 E
ffe

ct
 o

n 
ED

F

0 20 40 60 80 100

Total Emission Quintiles

(e) 10-Year EDF & Total Emission

-.05

0

.05

.1

Es
tim

at
ed

 E
ffe

ct
 o

n 
ED

F

0 20 40 60 80 100

Emission Intensity Quintiles

(f) 10-Year EDF & Carbon Intensity

Note: the figure presents the quintile regression of absolute emissions (left column) and carbon intensity

(right column) on 1-year, 5-year, and 10-year EDFs. Coefficients are estimated running the specification (1)

with all controls and year, country, and sector fixed effects. Standard errors are clustered at the firm level

with 95% confidence intervals displayed.
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Figure A3. EDF change around Paris Agreement (without controlling for Moody’s ratings)
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(f) Carbon Intensity & 10-Year EDF

Note: the figure presents yearly interaction coefficients of absolute emissions (left column) and carbon intensity (right column)

with 1-year, 5-year, and 10-year EDFs. The base year is 2008. Coefficients are estimated using firm and year-fixed effects, with

95% confidence intervals displayed.
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Figure A4. Difference in EDF Components Between Top and Bottom Emission Quintiles (in Levels)
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(c) Default Point & Absolute Emission

-1000

0

1000

2000

3000

D
ef

au
lt 

Po
in

t

20
09

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

(d) Default Point & Carbon Intensity

Note: the figure presents differences in market value of assets and default point (both in levels) between

firms in the top and bottom quintiles of emissions. Panels compare absolute emissions (left column) and

carbon intensity (right column), with estimates including country, sector and year-fixed effects. The 95%

confidence intervals are also displayed.
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Appendix B. Appendix Tables

Table B1. Source and Description Variables

Variable Name Description Source

1-Year EDF 1-Yr EDF (%) CreditEdge
5-Year EDF 5-Yr EDF (%) CreditEdge
10-Year EDF 10-Yr EDF (%) CreditEdge
Mean CDS Spreads Mean monthly CDS spreads Refinitiv
Carbon Intensity Carbon Intensity Scope 1+2 (t/ USD in million sales) MSCI
Ln(scope 1) ln(Scope 1 Emissions) MSCI
Size ln(Total Assets) CRSP/Compustat
Debt Ratio (current liabilities + long-term debt)/Total assets CRSP/Compustat
Operating Margin Ratio Operating income/Sales CRSP/Compustat
Country Country of the firms EDF-MSCI
Sector Sector from 2-digits NAICS code of the firms EDF-MSCI
Year EDF Year EDF
Asset Volatility Asset Volatility (EDF) (%) CreditEdge
Market Value of Assets Market Value of Assets (EDF) CreditEdge
Default Point Default Point (EDF) CreditEdge
Moody’s Ratings Clean Moody’s Ratings: encoded from 1 for AAA to 21 for C CreditEdge
Derived CDS Ratings Clean derived CDS Ratings: encoded from 1 for AAA to 21 for C CreditEdge
Capital Intensity Property, Plant and Equipment divided by Total Assets CRSP/Compustat
Intangible Assets Intangible Assets over Total Assets CRSP/Compustat
Public Ownership The indicator takes value 1 if the ultimate owner is a public entity Orbis

Note: All CRSP/Compustat variables are expressed in USD millions.
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Table B2. Analysis using Emission Levels and Intensity (not winsorized)

Panel A 1-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.039*** -0.009
(0.010) (0.021)

Carbon Intensity -0.003 0.004
(0.004) (0.005)

R2 0.05 0.05 0.10 0.10

Panel B 5-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.072*** -0.022
(0.009) (0.017)

Carbon Intensity -0.008*** 0.004
(0.003) (0.004)

R2 0.06 0.03 0.16 0.16

Panel C 10-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.118*** -0.007
(0.008) (0.014)

Carbon Intensity -0.014*** 0.000
(0.003) (0.003)

R2 0.12 0.03 0.27 0.27

Year FE Y Y Y Y
Country FE Y Y Y Y
Sector FE N N Y Y
Controls N N Y Y
Obs 213,555 213,555 213,555 213,555

Note: the controls included are size, debt ratio, operating margin, capital intensity, intangible assets, and

log sales in the current year. The dependent and independent variables are not winsorized. Standard errors

in parentheses are clustered at the firm level, * for p ă 0.10, ** for p ă 0.05 and for *** p ă 0.01.
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Table B3. Quantile Regression

Panel A 1-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.008*** 0.005***
(0.001) (0.002)

Carbon Intensity -0.003* 0.005***
(0.002) (0.002)

R2 0.01 0.00 0.21 0.21

Panel B 5-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.051*** 0.009
(0.004) (0.007)

Carbon Intensity -0.026*** 0.013**
(0.006) (0.006)

R2 0.06 0.01 0.23 0.23

Panel C 10-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.108*** -0.003
(0.005) (0.009)

Carbon Intensity -0.054*** 0.014
(0.008) (0.009)

R2 0.13 0.02 0.31 0.31

Year FE Y Y Y Y
Country FE Y Y Y Y
Sector FE N N Y Y
Controls N N Y Y
Obs 213,555 213,555 213,555 213,555

Note: the controls included are size, debt ratio, operating margin, capital intensity, intangible assets, and

log sales in the current year. The dependent and independent variables are winsorized at the top and bottom

5%. Standard errors in parentheses are clustered at the firm level, * for p ă 0.10, ** for p ă 0.05 and for

*** p ă 0.01.
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Table B4. Pre and Post Paris Agreement for Total Emission

(1) (2) (3) (4) (5) (6)
1 Year EDF 5 Year EDF 10 Year EDF Asset Volatility Market Value of Assets Default Point

Log(Scope 1) -0.063*** -0.072*** -0.076*** -0.396** 0.026* 0.024***
(0.013) (0.015) (0.014) (0.166) (0.014) (0.009)

Year 2009 ˆ Log(Scope 1) -0.004 -0.002 -0.001 -0.038 0.005 0.005*
(0.010) (0.008) (0.006) (0.042) (0.004) (0.003)

Year 2010 ˆ Log(Scope 1) 0.009 0.002 -0.003 0.067 -0.006 0.008**
(0.011) (0.009) (0.008) (0.058) (0.005) (0.004)

Year 2011 ˆ Log(Scope 1) 0.024** 0.017 0.009 0.232*** -0.012** 0.002
(0.011) (0.011) (0.009) (0.069) (0.005) (0.004)

Year 2012 ˆ Log(Scope 1) 0.039*** 0.029*** 0.019** 0.327*** -0.015** 0.006
(0.012) (0.011) (0.009) (0.076) (0.006) (0.004)

Year 2013 ˆ Log(Scope 1) 0.040*** 0.031*** 0.018* 0.395*** -0.023*** 0.005
(0.011) (0.011) (0.009) (0.082) (0.006) (0.004)

Year 2014 ˆ Log(Scope 1) 0.037*** 0.033*** 0.022** 0.487*** -0.022*** 0.005
(0.011) (0.011) (0.010) (0.085) (0.007) (0.004)

Year 2015 ˆ Log(Scope 1) 0.050*** 0.050*** 0.037*** 0.582*** -0.025*** 0.004
(0.012) (0.012) (0.011) (0.090) (0.008) (0.005)

Year 2016 ˆ Log(Scope 1) 0.074*** 0.074*** 0.059*** 0.736*** -0.017** 0.005
(0.013) (0.013) (0.011) (0.091) (0.008) (0.005)

Year 2017 ˆ Log(Scope 1) 0.064*** 0.077*** 0.063*** 0.815*** -0.019** 0.000
(0.013) (0.013) (0.012) (0.092) (0.009) (0.005)

Year 2018 ˆ Log(Scope 1) 0.057*** 0.066*** 0.054*** 0.735*** -0.025*** -0.004
(0.012) (0.013) (0.012) (0.093) (0.009) (0.005)

Year 2019 ˆ Log(Scope 1) 0.066*** 0.073*** 0.062*** 0.523*** -0.034*** -0.001
(0.013) (0.014) (0.013) (0.092) (0.009) (0.005)

Year 2020 ˆ Log(Scope 1) 0.058*** 0.066*** 0.059*** 0.204** -0.031*** -0.004
(0.013) (0.015) (0.013) (0.092) (0.010) (0.005)

Year 2021 ˆ Log(Scope 1) 0.046*** 0.055*** 0.048*** 0.095 -0.039*** -0.008
(0.012) (0.014) (0.013) (0.095) (0.010) (0.005)

Year 2022 ˆ Log(Scope 1) 0.041*** 0.048*** 0.045*** 0.143 -0.030*** -0.013**
Year, Country and Sector FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Obs 82,848 82,848 82,848 82,847 82,847 82,847
R2 0.41 0.48 0.54 0.88 0.97 0.98

Note: The coefficients of interest in the table are those for Log(Scope 1), the interaction between the year indicators (with 2008

as the base year) and Log(Scope 1). The controls included are size, debt ratio, operating margin, capital intensity, intangible

assets, and log sales in the current year. We do not report the coefficients of the interaction between absolute emissions and

years’ dummies and between Moody’s rating and years’ dummies. The specification includes year, country and sector fixed

effects. The dependent and independent variables are winsorized at the bottom and top 5%. Standard errors in parentheses

are clustered at the firm level, * for p ă 0.10, ** for p ă 0.05 and *** for p ă 0.01.
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Table B5. Pre and Post Paris Agreement for Emission Intensity

(1) (2) (3) (4) (5) (6)
1 Year EDF 5 Year EDF 10 Year EDF Asset Volatility Market Value of Assets Default Point

Carbon Intensity -0.039*** -0.043*** -0.042*** -0.106 0.024*** 0.014**
(0.009) (0.010) (0.010) (0.092) (0.008) (0.006)

Year 2009 ˆ Carbon Intensity -0.004 -0.000 0.000 0.010 -0.002 -0.000
(0.006) (0.005) (0.004) (0.029) (0.002) (0.002)

Year 2010 ˆ Carbon Intensity 0.013** 0.009 0.006 0.097*** -0.009*** 0.001
(0.006) (0.006) (0.005) (0.038) (0.003) (0.003)

Year 2011 ˆ Carbon Intensity 0.025*** 0.020*** 0.015** 0.201*** -0.010*** -0.002
(0.007) (0.007) (0.006) (0.044) (0.003) (0.003)

Year 2012 ˆ Carbon Intensity 0.025*** 0.021*** 0.014** 0.215*** -0.008* -0.000
(0.008) (0.008) (0.006) (0.052) (0.004) (0.003)

Year 2013 ˆ Carbon Intensity 0.034*** 0.025*** 0.016** 0.250*** -0.014*** -0.001
(0.008) (0.008) (0.007) (0.058) (0.004) (0.003)

Year 2014 ˆ Carbon Intensity 0.036*** 0.031*** 0.023*** 0.317*** -0.016*** 0.000
(0.008) (0.008) (0.007) (0.057) (0.005) (0.003)

Year 2015 ˆ Carbon Intensity 0.043*** 0.041*** 0.031*** 0.371*** -0.019*** 0.000
(0.008) (0.009) (0.008) (0.061) (0.006) (0.004)

Year 2016 ˆ Carbon Intensity 0.055*** 0.052*** 0.041*** 0.502*** -0.010* 0.002
(0.010) (0.010) (0.009) (0.061) (0.005) (0.004)

Year 2017 ˆ Carbon Intensity 0.058*** 0.061*** 0.049*** 0.602*** -0.012** -0.001
(0.010) (0.011) (0.009) (0.065) (0.006) (0.004)

Year 2018 ˆ Carbon Intensity 0.045*** 0.049*** 0.039*** 0.541*** -0.009 0.001
(0.008) (0.009) (0.009) (0.066) (0.006) (0.004)

Year 2019 ˆ Carbon Intensity 0.048*** 0.050*** 0.041*** 0.354*** -0.011* 0.003
(0.009) (0.011) (0.010) (0.061) (0.007) (0.004)

Year 2020 ˆ Carbon Intensity 0.044*** 0.046*** 0.039*** 0.104* -0.011 0.004
(0.010) (0.011) (0.010) (0.062) (0.007) (0.005)

Year 2021 ˆ Carbon Intensity 0.035*** 0.039*** 0.032*** 0.062 -0.012* 0.003
(0.009) (0.011) (0.010) (0.067) (0.007) (0.005)

Year 2022 ˆ Carbon Intensity 0.036*** 0.038*** 0.033*** 0.139* -0.006 -0.001
(0.013) (0.013) (0.012) (0.075) (0.007) (0.005)

Year, Country and Sector FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Obs 82,848 82,848 82,848 82,847 82,847 82,847
R2 0.41 0.48 0.54 0.87 0.97 0.98

Note: The coefficients of interest in the table are those for Carbon Intensity, the interaction between the year indicators (with

2008 as the base year) and Carbon Intensity. The controls included are size, debt ratio, operating margin, capital intensity,

intangible assets, and log sales in the current year. We do not report the coefficients of the interaction between emissions and

years’ dummies and between Moody’s rating and years’ dummies. The specification includes year, country and sector fixed

effects. The dependent and independent variables are winsorized at the bottom and top 5%. Standard errors in parentheses

are clustered at the firm level, * for p ă 0.10, ** for p ă 0.05 and *** for p ă 0.01.
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Table B6. Effect of Log(Scope 1) on EDF through its components

Indirect effect 1-Year EDF 5-Year EDF 10-Year EDF

Asset volatility 0.007026*** 0.008357*** 0.008037***
(0.000452) (0.000538) (0.000517)

Log(Market value) 0.004564*** 0.005918*** 0.005607***
(0.000542) (0.000703) (0.000666)

Log(Default point) 0.005826*** 0.007597*** 0.006884***
(0.000346) (0.000451) (0.000409)

Direct effect

Log(Scope1) 0.004972*** 0.009455*** 0.008689***
(0.000675) (0.000738) (0.000742)

Note: This table reports the direct and indirect effects of logpScope1q on EDF, using a structural equation model (SEM) that

decomposes the overall effect into three EDF components (asset volatility, log(market value of assets), and log(default point)).

The indirect effect is obtained by multiplying (i) the coefficient of the variable of interest (asset volatility, log(market value of

assets), and log(default point)) from the main regression by (ii) the coefficient on the interaction term logpScope1qPost´Paris

in the corresponding EDF-component regression. Standard errors are shown in parentheses * for p ă 0.10, ** for p ă 0.05 and

*** for p ă 0.01.
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Table B7. Effect of Carbon intensity on EDF through its components

Indirect effect 1-Year EDF 5-Year EDF 10-Year EDF

Asset volatility 0.003983*** 0.004758*** 0.004619***
(0.000597) (0.000713) (0.000692)

Log(Market value) 0.007917*** 0.010242*** 0.009639***
(0.000708) (0.000916) (0.000862)

Log(Default point) 0.004169*** 0.005444*** 0.004941***
(0.000449) (0.000586) (0.000532)

Direct effect

Carbon intensity 0.008586*** 0.014839*** 0.013866***
(0.000876) (0.000959) (0.000969)

Note: This table reports the direct and indirect effects of carbon intensity on EDF, using a structural equation model

(SEM) that decomposes the overall effect into three EDF components (asset volatility, log(market value of assets), and

log(default point)). The indirect effect is obtained by multiplying (i) the coefficient of the variable of interest (asset volatil-

ity, log(market value of assets), or log(default point)) from the main regression by (ii) the coefficient on the interaction term

carbon intensityPost´Paris in the corresponding EDF-component regression. Standard errors are shown in parentheses * for

p ă 0.10, ** for p ă 0.05 and *** for p ă 0.01.
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Table B8. Carbon Surprise and Credit Risk in Europe

1-Year EDF 5-Year EDF 10-Year EDF

(1) (2) (3) (4) (5) (6)
Log(Scope 1) 0.017 0.030* 0.023

(0.012) (0.016) (0.015)
CPSurprise ˆ Log(Scope 1) 0.004** 0.002 -0.001

(0.002) (0.002) (0.001)
Carbon Intensity 0.025*** 0.037*** 0.035***

(0.009) (0.013) (0.012)
CPSurprise ˆ Carbon Intensity 0.003 0.002 0.000

(0.002) (0.002) (0.001)
Year, Country and Sector FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Obs 49,955 49,955 49,955 49,955 49,955 49,955
R2 0.25 0.25 0.27 0.28 0.39 0.40

Note: The coefficients of interest in the table are those for Carbon Intensity and Log(Scope 1) interacted with CPSurprise.

CPSurprise is a binary variable that takes value one if there is a positive carbon policy surprise and 0 otherwise. The carbon

policy surprises are measured as euro change in carbon price, relative to prevailing wholesale electricity price (Känzig, 2023).

The analysis is conducted for the Europe area only. The controls included are size, debt ratio, operating margin, capital

intensity, intangible assets, and current-year log sales. The specification includes year, country and sector fixed effects. The

dependent and independent variables are winsorized at the bottom and top 5%. Standard errors in parentheses are clustered

at the firm level, * for p ă 0.10, ** for p ă 0.05 and *** for p ă 0.01.

60



Table B9. Rate of Change in Emissions

1-Year EDF 5-Year EDF 10-Year EDF

(1) (2) (3) (4) (5) (6)
∆t´pt´1qLog(Scope 1) -0.023*** -0.016 -0.000

(0.009) (0.011) (0.011)
∆t´pt´1qCarbon Intensity 0.008 0.005 0.001

(0.008) (0.009) (0.009)
Year, Country and Sector FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Obs 197,582 197,582 197,582 197,582 197,582 197,582
R2 0.18 0.18 0.21 0.21 0.34 0.34

Note: The dependent variable is ∆logpScope1q constructed as logpScope1qt ´ logpScope1qt´1. The controls

included are size, debt ratio, operating margin, capital intensity, intangible assets, and current-year log

sales.The Fixed Effects (FE) included are Year, Country, and Sector FE. The dependent and independent

variables are winsorized at the bottom and top 5%. Standard errors in parentheses are clustered at the firm

level, and statistical significance is * for p ă 0.10, ** for p ă 0.05 and for *** p ă 0.01.

Table B10. Lagged Emissions

1-Year EDF 5-Year EDF 10-Year EDF

(1) (2) (3) (4) (5) (6)
Log(Scope 1)t´1 0.010 0.016* 0.004

(0.007) (0.009) (0.009)
Carbon Intensityt´1 0.017** 0.024*** 0.020**

(0.007) (0.009) (0.009)
Year, Country and Sector FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
N 197,582 197,582 197,582 197,582 197,582 197,582
R2 0.18 0.18 0.21 0.21 0.34 0.34

Note: The table reports the analysis using 1-year lagged emission variables. The controls included are size,

debt ratio, operating margin, capital intensity, intangible assets, and current-year log sales.The Fixed Effects

(FE) included are Year, Country, and Sector FE. The dependent and independent variables are winsorized

at the bottom and top 5%. Standard errors in parentheses are clustered at the firm level, and statistical

significance is reported as * for p ă 0.05, ** for p ă 0.01 and for *** p ă 0.001.
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Table B11. Ratings, Sector and Public Ownership (Total Emissions)

Firms breakdown Ratings Sector Ownership

Good Bad Green Brown Public Private

Panel (1) - 1-Year EDF

Log(Scope 1) -0.016** 0.004 0.012 0.013 0.073*** 0.002
(0.006) (0.022) (0.019) (0.011) (0.024) (0.007)

R2 0.20 0.24 0.23 0.30 0.43 0.20

Panel (2) - 5-Year EDF

Log(Scope 1) -0.022*** 0.007 0.031 0.025* 0.087*** 0.008
(0.008) (0.026) (0.026) (0.015) (0.032) (0.010)

R2 0.26 0.21 0.26 0.41 0.57 0.22

Panel (3) - 10-Year EDF

Log(Scope 1) -0.030*** -0.007 0.027 0.016 0.061** 0.001
(0.009) (0.025) (0.026) (0.017) (0.026) (0.010)

Year, Country and Sector FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Obs 52,043 30,402 34,251 26,386 6,757 180,817
R2 0.36 0.26 0.44 0.50 0.68 0.35

Note: The table reports the estimated coefficients of the baseline regression divided by ratings, sector and

public ownership with Year, Sector and Country FE. The controls included are size, debt ratio, operating

margin, capital intensity, intangible assets, and current-year log sales. The dependent and independent

variables are winsorized at the bottom and top 5%. Standard errors in parentheses are clustered at the firm

level, * for p ă 0.05, ** for p ă 0.01 and for *** p ă 0.001.
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Table B12. Ratings, Sector and Public Ownership (Carbon Intensity)

Firms breakdown Ratings Sector Ownership

Good Bad Green Brown Public Private

Panel (1) - 1-Year EDF

Carbon Intensity -0.004 0.026 -0.083 0.021*** 0.056*** 0.011
(0.004) (0.024) (0.100) (0.007) (0.016) (0.008)

R2 0.20 0.24 0.23 0.30 0.44 0.20

Panel (2) - 5-Year EDF

Carbon Intensity -0.005 0.030 -0.098 0.033*** 0.075*** 0.016
(0.005) (0.028) (0.135) (0.010) (0.020) (0.011)

R2 0.25 0.21 0.26 0.42 0.59 0.22

Panel (3) - 10-Year EDF

Carbon Intensity -0.009 0.022 -0.169* 0.032*** 0.061*** 0.012
(0.006) (0.025) (0.092) (0.011) (0.016) (0.011)

Year, Country and Sector FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Obs 52,043 30,402 34,251 26,386 6,757 180,817
R2 0.35 0.26 0.44 0.51 0.69 0.35

Note: The table reports the estimated coefficients of the baseline regression divided by ratings, sector and

public ownership with Year, Sector and Country FE. The controls included are size, debt ratio, operating

margin, capital intensity, intangible assets, and current-year log sales. The dependent and independent

variables are winsorized at the bottom and top 5%. Standard errors in parentheses are clustered at the firm

level, * for p ă 0.05, ** for p ă 0.01 and for *** p ă 0.001.
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Table B13. Yearly Analysis of Emission Levels and Intensity

Panel A 1-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.018*** 0.008
(0.004) (0.007)

Carbon Intensity -0.005 0.016**
(0.005) (0.007)

R2 0.12 0.11 0.21 0.21

Panel B 5-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.055*** 0.014
(0.005) (0.009)

Carbon Intensity -0.023*** 0.022**
(0.008) (0.009)

R2 0.08 0.04 0.22 0.23

Panel C 10-Year EDF

(1) (2) (3) (4)

Log(Scope 1) -0.103*** 0.003
(0.006) (0.010)

Carbon Intensity -0.049*** 0.018*
(0.008) (0.009)

Year FE Y Y Y Y
Country FE Y Y Y Y
Sector FE N N Y Y
Controls N N Y Y
Obs 17,909 17,909 17,909 17,909
R2 0.16 0.04 0.35 0.35

Note: The controls included are size, debt ratio, operating margin, capital intensity, intangible assets, and

current-year log sales. EDF values are reported as the average EDF at the yearly level for each company.

The dependent and independent variables are winsorize at the bottom and top 5%. Standard errors in

parentheses are clustered at the firm level, * for p ă 0.10, ** for p ă 0.05 and for *** p ă 0.01.
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