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Abstract 

In this paper we assess the systemic risk of listed Italian insurers and banks by estimating four 
different measures based on conditional value-at-risk and marginal expected shortfall. Daily 
estimates in the period from 2007 to 2023 are obtained by assuming a parametric model able to 
capture volatility clustering phenomena. We keep the framework as simple as possible to get 
closed formulas or straightforward simulations for the estimation of the risk measures 
empirically studied in this paper. This allows us to compare the systemic risk of the entities in 
our sample without resorting to complex model calibration and risk measure evaluation, and to 
explore the dynamics of systemic risk on more than 4,000 daily observations for the 14 banks 
and 4 insurers in our sample. Our findings, partly justified by the composition of our sample 
(i.e. the few insurance companies considered have significantly higher market capitalizations 
compared with some of the banks in the sample), reveal that, across three out of four risk 
metrics, insurance entities exhibit slightly higher systemic risk levels than banks, on average. 
The least systemic banks consistently maintain lower risk profiles compared with the least 
systemic insurance companies. Conversely, the most systemic bank is slightly riskier than the 
most systemic insurance company. However, there is more variability among banks compared 
with insurance companies.  
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Introduction1

In an increasingly interconnected financial landscape, the assessment of systemic
risk within the banking and insurance sectors has become of increasing importance.
As past financial crises have shown, the failure or distress of a single financial
institution can trigger a domino effect, posing a significant threat to the stability
of an entire system (financial system). In light of this, our study delves into an
empirical examination of the systemic risk of the Italian financial sector over the
past 16 years, focusing on both listed insurances and banks. The primary objective
of this work is to estimate systemic risk using four distinct measures, based on the
conditional value-at-risk (CoVaR) introduced by Adrian and Brunnermeier [2016]
and the marginal expected shortfall (MES) as defined by Acharya et al. [2017] (see
also Bernard et al. [2012]). The CoVaR measures how much the system value-at-
risk (VaR) increases when a particular institution is in distress. The MES is the
expected shortfall (ES) of the system (a particular institution) conditional on the
occurrence of a distress of a particular institution (the system). While CoVaR is
based on VaR, MES is based on the ES. The International Association of Insurance
Supervisors [2021] includes both measures among the reduced-form approaches that
could be used by supervisors to identify systemically risky insurers.

Assuming that the CoVaR and the MES are possibly good candidates to mea-
sure systemic risk, the aim of this paper is twofold. First, we analyze the behavior
of these measures during a large time span covering the last 16 years. Second,
we compare the systemic risks of Italian insurances and banks and analyze their
dynamics and differences, if any, over time.

To achieve daily risk estimates, we implement a bivariate parametric model,
carefully designed to capture the volatility clustering behavior of stock log returns.
We keep our modeling framework as simple as possible and this allows us to deal
only with closed-form solutions and straightforward simulations for the estimation
of the risk measures. The estimates can be obtained without complex algorithms to
calibrate the model and to evaluate the risk measures. This reduces the computa-
tion burden and ensures that the empirical assessment of systemic risk is accessible
without a deep knowledge of multivariate analysis.

The rest of the paper is organized as follows. In Section 2, we recall the defini-
tion of the systemic risk measures we focus on in this study. After having provided
some details on the input data, we describe the parametric model and the esti-
mation approach implemented in our risk assessment framework (see Section 3).
Thus, in Section 4 we describe the main findings of the empirical analysis. Section
5 concludes.

1The authors are grateful to Pierluigi Bologna, Giovanni Guazzarotti, Stefano Pasqualini
and Agostino Tripodi for their helpful suggestions. This publication should not be reported as
representing the views of the Bank of Italy and the IVASS. The views expressed are those of the
authors and do not necessarily reflect those of the Bank of Italy and the IVASS.
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1 Systemic risk measures

In this section we recall the definition of CoVaR, both the original one introduced
by Adrian and Brunnermeier [2016] and the more appropriate alternative (see
Bernard et al. [2012] and Bianchi et al. [2023]), and MES as proposed by Acharya
et al. [2017].

For each institution j, the random variable yjt represents the log returns of the
market value of equity Sj

t , that is y
j
t = log(Sj

t /S
j
t−1). Superscript sys denotes the

entire system (financial system), i.e. the capitalization-weighted portfolio of all
financial institutions in the selected sample or an index that is representative of
the stock market (e.g. the S&P 500 index or the Euro Stoxx 50 index).

At time t, the VaRj
α,t of financial institution j, with tail level α, is defined as

P
(
yjt ≤ VaRj

α,t

)
= α.

As defined by Adrian and Brunnermeier [2016], when α is 1% (2.5% or 5%) and
market returns of institution j are equal to its VaRα, a distress for institution j
occurs. Thus, for a given tail level β, the CoVaR= of the system conditional on
institution j being in distress can be obtain by the following equality

P
(
ysyst ≤ CoVaR=j

β,α,t | y
j
t = VaRj

α,t

)
= β. (1.1)

The ∆CoVaR= is defined as the difference between the CoVaR in equation (2.1)
and the CoVaR with α = 0.5 representing the median state, that is

∆CoVaR=j
β,α,t = CoVaR=j

β,α,t − CoVaR=j
β,0.5,t,

and measures the institution j contribution to systemic risk.
A more appropriate definition of CoVaR is also possible, that is, for a given tail

level β, the CoVaR≤ of the system conditional on institution j being in distress is
equal to

P
(
ysyst ≤ CoVaR≤sys|j

β,α,t | y
j
t ≤ VaRj

α,t

)
= β. (1.2)

In equation (2.2) a distress occurs when market returns of institution j are less or
equal to its VaRα. Under the definition in equation (2.2), it makes no sense to set
α = 0.5 to define the median state, as done under the definition in equation (2.1).
For this reason it is necessary to introduce a different benchmark state to define the
∆CoVaR≤. By following Girardi and Ergün [2013], we define the benchmark state
as the event {µj

t − σj
t ≤ yjt ≤ µj

t + σj
t} with probability of occurrence pjt , where

µj
t and σj

t are, respectively, the conditional mean and the conditional standard
deviation of institution j. We refer to this event as the one-sigma event, in which
the log returns of the institution j are far no more than one standard deviation
(e.g. one-sigma) from the mean. Thus, as in equation (2.2), we define

P
(
ysyst ≤ CoVaR≤sys|j

β,σ,t |µ
j
t − σj

t ≤ yjt ≤ µj
t + σj

t

)
= β. (1.3)

Under the definition in equation (2.2), the institution j contribution to systemic
risk is defined by

∆CoVaR≤j

β,α,t = CoVaR≤j

β,α,t − CoVaR≤j

β,σ,t. (1.4)
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It captures the negative externalities that institution j imposes on the system. It
should be noted that while the first term of the right-hand side of the equation
(2.4) represents the tail event (there is α), the second term represents the one-sigma
event (there is σ).

At time t, given the VaRsys
α,t of the system (financial system), with tail level α,

the marginal expected shortfall MESj
α,t of financial institution j, with tail level α,

was defined by Acharya et al. [2017] as

MES
j|sys
α,t = E

[
yjt
∣∣ ysyst ≤ VaRsys

α,t ]. (1.5)

Equation (2.5) represents the expected loss of financial institution j when the
system is in distress. This distress is represented through the inequality {ysys ≤
VaRsys

α }. Similarly to equation (2.2), for a given tail level β, the CoVaR≤ of the
institution j conditional to the system being in distress is equal to

P
(
yjt ≤ CoVaR≤j|sys

β,α,t | y
sys
t ≤ VaRsys

α,t

)
= β, (1.6)

and, as shown by Banulescu et al. [2021], the following equality holds

MES
j|sys
α,t =

∫ 1

0

CoVaR≤j|sys
β,α,tdβ. (1.7)

It is possible to define a MES with the same conditioning event of the CoVaR≤

in equation (2.2), that is

MES
sys|j
α,t = E [ysyst | yjt ≤ VaRj

α,t]. (1.8)

Equation (2.8) represents the expected loss of the system when the financial insti-
tution j is in distress, that is the event {yj ≤ VaRj

α}.
In Adrian and Brunnermeier [2016] the distress of a financial institution j is

defined as the event {yj = VaRj
α}. Here we also consider the conditional value-at-

risk (CoVaR≤) measure, that is the systemic risk measure where the conditioning
event is the distress represented through the inequality {yj ≤ VaRj

α}. Mainik
and Schaanning [2014] demonstrates that the CoVaR≤ in equation (2.2) gives a
much more consistent response to dependence than the CoVaR= in equation (2.1).
Additionally, as shown in Banulescu et al. [2021], the CoVaR≤ can be backtested
(see also Girardi and Ergün [2013] and Bianchi et al. [2023]), by using the standard
tests developed for the VaR, and the MES can be written in terms of this systemic
risk measure. Conversely, the original CoVaR= of Adrian and Brunnermeier [2016]
is simple to estimate, but not so simple to backtest, because the tests to backtest
the VaR cannot be applied. As shown in Bianchi and Sorrentino [2020], if the
model for stock log returns is based on the multivariate normal random variable,
a close formula for CoVaR= is available.

2 Implementation

The measurement of the systemic risk measures described in Section 2 is divided
into three steps: (1) the estimate of the univariate models on the time series of log
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returns; (2) the estimate of the bivariate models on the data extracted from the
first step; (3) the computation of the risk measure (VaR) and of the systemic risk
measures (i.e. CoVaR=, CoVaR≤, and two different definitions of MES). It should
be noted that the definitions of the four systemic risk measures provided in Section
2 are valid for any bivariate model for the dynamics of log returns.

In this section we describe the data input of the empirical analysis (Section
3.1), the parametric model (Section 3.2) and the approach followed to estimate the
systemic risk measures (Section 3.3).

2.1 Data

We estimate the systemic risk measure with daily data from January 2002 to
September 2023, by considering in the estimation of model parameters rolling win-
dows with a 5-year length. The dividend-adjusted closing stock prices and the
market capitalization for listed Italian insurance companies and banks are obtained
from Datastream (LSEG). We consider all insurance companies and banks listed
at the end of September 2023 and with at least five years of daily observations (i.e.
4 insurances and 14 banks).

The time period in this analysis includes the high volatility period after the
Lehman Brothers filed for Chapter 11 bankruptcy protection (September 15 2008),
the eurozone sovereign debt crisis, during which, in November 2011, the spread
between the 10-year Italian BTP and the German Bund with the same maturity
exceeded 500 basis points, the turmoil after the Italian political elections in 2018,
the outbreak of Covid-19 when the Italian stock market fell by 16.92 percent in
a single day (March 12, 2020), and the recent financial market turmoil caused by
the conflict between Russia and Ukraine.

In the empirical study we consider two different definitions of system. First,
we assume that the it is represented by the capitalization-weighted portfolio of all
financial institutions in the selected sample, that is both insurance companies and
banks, and we refer to it as weighted portfolio. Then, as an alternative, we also
assume the system represented by FTSE MIB index, in which some banks and
insurances are included,2 and we refer to it as index. Given the inclusion of non-
financial companies in the index, the risk measures are evaluated within a broader
system, going beyond just the financial sector. Thus, we study how the assumption
in the definition of system affects the estimates of the systemic risk measures.

2.2 Parametric model

In this section we provide a concise overview of the parametric model on which
our systemic risk metrics are based. We assume for univariate log return processes
an AR(1)-GARCH(1,1) model with Glosten-Jagannathan-Runkle (GJR) dynamics
for the volatility, that is

yt = ayt−1 + σtεt + c

σ2
t = ξ0 + ξ1 (|σt−1εt−1| − γ (σt−1εt−1))

2 + η1σ
2
t−1

(2.1)

2For the complete list of components readers are reffered to https://www.borsaitaliana.

it/borsa/azioni/ftse-mib/lista.html?lang=en.
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where εt is a collection of independent and normally distributed random variables
with zero mean and unit variance (see Glosten et al. [1993]).

The univariate autoregressive GARCH model featuring GJR dynamics for the
log returns of both the system and individual institutions is estimated by means of
the garchFit function of the fGarch package of R. In each iteration of the estimation
phase, we assess the statistical significance of the autoregressive component. If it
fails to meet the significance threshold, we proceed to estimate the model without
the autoregressive component.

Once we have estimated the univariate discrete-time dynamic volatility model,
as specified in equation (3.1), for each individual institution and the system as
a whole, we proceed to extract the innovations. Subsequently, at each time t,
we estimate the parameters of the multivariate normal random variable having
as margins the system and the financial institutions. This is equivalent to the
estimation of the constant conditional correlation (CCC) model. As an alternative,
it is possible to consider the dynamic conditional correlation (DCC) model with
multivariate normal (see Bauwens et al. [2006]) or non-normal (see Bianchi et al.
[2023]) innovations.

Following the completion of these two estimation steps, we proceed to predict
the one-day ahead volatility based on the AR-GARCH parameters we have found
out. These forecasted volatilities serve as the input data for the evaluation of the
risk metrics in Section (3.3).

2.3 Risk measures estimation

The first step in the estimation of the systemic risk measures discussed in Section
2 is the computation of the VaR. Under the modeling framework defined in Section
3.2, as observed in Kim et al. [2011], the following equality holds

VaRy
α,t+1 = ayt + σt+1(VaR

ε
α,t+1) + c. (2.2)

In practical terms, this implies that the VaR of y is the quantile of a standardized
random variable ε. Within the modeling framework described in Section 3.2, ε is
a standardized normal random variable.

From equations (17) and (18) in Adrian and Brunnermeier [2011], if one assumes
a multivariate GARCH model with normal innovations, the ∆CoVaR= becomes a
function of the volatility of the system and the correlation between the institution
j and the system (see Bianchi and Sorrentino [2020]), that is,

∆CoVaR=j
β,α,t = ϕ−1(α)ρjtσ

sys
t , (2.3)

where ϕ−1 is the inverse of the cumulative distribution function of a standardized
normal random variable, ρjt is the correlation between the residuals of institution j
and those of the system, and σsys

t is one-day ahead forecast at day t of the volatility
in the system estimated in Section 3.2. As observed in Adrian and Brunnermeier
[2016], for jointly and normally distributed random variables, the ∆CoVaR esti-
mate strictly depends on the correlation between institution j and the system, that
is, systemic banks are those with the highest correlation with the system.
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The estimates of CoVaR≤ and MES are more challenging to obtain. Even under
the bivariate normal distribution assumption, numerical procedures are needed to
estimate these systemic risk measures (see Bernard et al. [2012]). In both cases
there are not closed formulas and the estimates are obtained by evaluating multiple
integrals, by finding the zeros of a function (see Bianchi et al. [2023]) and (or) by
numerical inversion.

However, as observed by Brownlees and Engle [2017], it is straightforward to
implement a simulation based procedure to obtain exact MES (and CoVaR≤) es-
timates. Even if this simulation approach is not elegant from a purely theoretical
perspective, it remains valid for any bivariate model for the dynamics of log re-
turns. Additionally, the same random samples can be used to obtain predictions
of both systemic risk measures, reducing the simulation bias in the analysis of the
differences between risk measures. The simulation approach seems particularly
convenient when dealing with normal random variables, as in our case, since they
are simple to simulate.

Assuming that, for each t and each j, we are able to generate N random variates
yjt,i and ysyst,i , where i ranges from 1 to N , we define the following events

M =
{
ysyst,i ≤ CoVaR≤sys|j

β,α,t

}
,

Dj =
{
yjt,i ≤ VaRj

α,t

}
,

Dsys =
{
ysyst,i ≤ VaRsys

α,t

}
,

Dσj =
{
µj
t − σj

t ≤ yjt,i ≤ µj
t + σj

t

}
.

An estimate of the CoVaR≤ in equation (2.2) can be obtained by finding the

value of CoVaR≤sys|j
β,α,t which satisfies the following equality∑N

i=1 IMIDj∑N
i=1 IDj

= β, (2.4)

where I[·] is an indicator function. To estimate the CoVaR≤ in equation (2.3),
one considers the event Dσj instead of Dj. Similarly, an estimate of the MES in
equation (2.5) can be obtained through the following equality

MES
j|sys
α,t =

∑N
i=1 y

j
t,iIDsys∑N

i=1 IDsys

, (2.5)

and the same approach can be used to estimate the MESsys|j in equation (2.8).

3 Empirical findings

As observed in Section 3, the systemic risk measure estimation is divided into three
steps. In the first step, we estimate a univariate AR-GARCH model on the time
series of log returns. In the second step, we estimate the dependence structure. In
the third step, we compute the VaR at the given tail level α and then, by setting
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α (or σ) and β, we compute the four systemic risk measures. While the ∆CoVaR=

is computed by applying the formula in equation (3.3), the other three systemic
risk measures are obtained through Monte Carlo simulation. As already observed,
given the bivariate discrete-time model discussed in Section 3.2, it is simple to
generate random draws for yjt and ysyst and, then, to evaluate (3.4) and (3.5). For
each institution j and each time step t, we generate one million simulations for
the bivariate model. To speed up the evaluation phase, we rely on an efficient R
code making use of the packages foreach and doParallel and run it on a multi-core
platform (a Linux based system with Intel processors).

The systemic risk measures are estimated on the basis of the time series from the
previous five years. For example, the CoVaR= for December 6, 2018 is estimated
from the data for the period from December 6, 2013 to December 5, 2018. For
each intermediary and each model we consider 4,253 estimations from January 3,
2007 to September 30, 2023. It should be noted that all the data presented in this
section consists of moving averages calculated over a two-month rolling period.

In this empirical analysis the comparison is conducted under different stand-
points. First, we investigate if and how the definition of system affects the esti-
mates. Second, we assess how the systemic risk depends on the definition of risk
metrics (i.e. ∆CoVaR=, ∆CoVaR≤, MESj|sys, and MESsys|j). Third, the systemic
risk may vary across different types of institutions (i.e. insurances vs banks).

As observed in Section 3.1, we consider two different definitions of system.
While the first one is represented by the capitalization-weighted portfolio of all fi-
nancial institutions in the selected sample (Figures 1), the second one is represented
by FTSE MIB index (Figures 2).

In Figures 1 and 2 we show the behavior of the ∆CoVaR=, ∆CoVaR≤ and of two
MES, the first measuring the expected loss of the institution j given the distress
of the system (i.e. MESj|sys) as proposed by Acharya et al. [2017], the second
measuring the expected loss of the system given the distress of the institution j
(i.e. MESsys|j).

In both figures, on the left (right) side, the black lines represent the highest
and lowest values achieved by the insurances (banks) during a specific trading day.
In contrast, the magenta (red) lines denote the peak values attained by the banks
(insurances) within the sample on a given trading day, while the green (blue) lines
depict the corresponding minimum values.

Then in Tables 1 and 2 for the four systemic risk measures and by distinguish
between insurances (I) and banks (B), we report some summary statistics computed
across institutions and over time. We first compute, for each trading day, minimum,
maximum and mean values across institutions, then we evaluate various statistics
of these time series over all trading days considered in this study. This allow us to
evaluate the differences between Italian insurances and banks.

Even if, by construction the ∆CoVaR= is lower than the ∆CoVaR≤, we do
not observe remarkable differences between the two measures. This is also caused
by the choice of the parametric model which is not able to capture possible tail
events (see Bianchi et al. [2023]). Since the CoVaR≤ and the MESsys|j have a
similar definition and the same conditioning event, there are not remarkable differ-
ences between these two measures and their dynamics are almost indistinguishable.
Conversely, the MESj|sys, which measures the expected shortfall (ES) of the insti-
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low high mn md σ s k

∆
C
oV

aR
=

w
ei
gh

ed
p
or
tf
ol
io min 0.17 2.44 0.97 0.95 0.39 0.69 1.79

B max 1.28 5.94 2.70 2.52 0.89 1.16 1.35
mean 0.75 4.29 1.86 1.78 0.63 1.13 1.88

min 0.50 4.42 1.73 1.63 0.63 1.05 2.33
I max 1.30 5.31 2.44 2.26 0.79 1.23 1.38

mean 0.81 4.71 2.00 1.88 0.67 1.19 1.98

in
d
ex

min 0.15 2.21 0.78 0.76 0.31 0.98 2.85
B max 0.93 5.00 2.02 1.81 0.70 1.57 2.68

mean 0.57 3.65 1.44 1.32 0.50 1.41 2.51

min 0.41 3.96 1.38 1.26 0.50 1.58 4.77
I max 0.92 4.71 1.96 1.74 0.69 1.55 2.37

mean 0.61 4.23 1.60 1.43 0.56 1.59 3.43

∆
C
oV

aR
≤

w
ei
gh

ed
p
or
tf
ol
io min 0.21 2.99 1.19 1.17 0.47 0.70 1.81

B max 1.54 6.97 3.18 2.96 1.04 1.17 1.33
mean 0.91 5.11 2.23 2.12 0.76 1.13 1.85

min 0.62 5.29 2.09 1.97 0.75 1.06 2.30
I max 1.55 6.24 2.89 2.67 0.94 1.23 1.34

mean 0.99 5.62 2.39 2.25 0.80 1.19 1.93

in
d
ex

min 0.18 2.70 0.96 0.93 0.38 0.97 2.78
B max 1.11 5.89 2.38 2.12 0.82 1.59 2.73

mean 0.69 4.38 1.73 1.58 0.60 1.43 2.54

min 0.50 4.74 1.66 1.52 0.60 1.58 4.65
I max 1.10 5.57 2.32 2.05 0.82 1.57 2.47

mean 0.74 5.04 1.91 1.72 0.67 1.60 3.41

Table 1: Summary statistics of the estimated systemic risk measures between January, 2007
and September, 2023. All values are changed in sign. We first compute minimum, maximum
and mean values (min, max and mean) across banks (B) and insurances (I), then we evaluate
various statistics of these time series: minimum (low), maximum (high), mean (mn), median
(md), standard deviation (σ), skewness (s) and kurtosis (k).
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low high mn md σ s k

M
E
S
j
|s
y
s

w
ei
gh

ed
p
or
tf
ol
io min 0.03 2.01 1.06 1.13 0.46 -0.50 -0.35

B max 2.02 11.89 5.57 5.00 2.08 0.98 0.25
mean 1.07 6.24 3.01 2.94 0.90 0.57 1.01

min 0.56 4.09 2.18 2.13 0.69 0.43 0.19
I max 1.55 18.28 3.41 2.90 2.10 4.41 24.63

mean 1.07 9.77 2.75 2.49 1.21 2.68 10.72

in
d
ex

min 0.03 2.01 1.07 1.13 0.44 -0.57 -0.06
B max 2.20 11.17 5.42 4.79 1.98 1.07 0.33

mean 1.14 6.05 3.00 2.90 0.87 0.64 0.81

min 0.64 4.30 2.25 2.18 0.72 0.56 0.15
I max 1.57 19.42 3.53 2.98 2.26 4.38 24.11

mean 1.13 10.39 2.85 2.58 1.29 2.75 10.92

M
E
S
s
y
s
|j

w
ei
gh

ed
p
or
tf
ol
io min 0.16 3.07 1.21 1.21 0.50 0.60 1.55

B max 1.56 7.42 3.36 3.16 1.11 1.13 1.32
mean 0.88 5.40 2.32 2.23 0.81 1.07 1.77

min 0.58 5.52 2.16 2.05 0.79 1.00 2.21
I max 1.57 6.68 3.05 2.83 1.00 1.18 1.29

mean 0.96 5.88 2.49 2.36 0.84 1.13 1.85

in
d
ex

min 0.18 2.75 1.00 0.97 0.40 0.89 2.33
B max 1.16 6.21 2.53 2.28 0.88 1.53 2.48

mean 0.71 4.54 1.82 1.67 0.63 1.35 2.24

min 0.51 4.91 1.74 1.60 0.63 1.53 4.39
I max 1.15 5.85 2.46 2.19 0.87 1.50 2.17

mean 0.77 5.25 2.01 1.81 0.70 1.53 3.13

Table 2: Summary statistics of the estimated systemic risk measures between January, 2007
and September, 2023. All values are changed in sign. We first compute minimum, maximum
and mean values (min, max and mean) across banks (B) and insurances (I), then we evaluate
various statistics of these time series: minimum (low), maximum (high), mean (mn), median
(md), standard deviation (σ), skewness (s) and kurtosis (k).

13



tution j conditional on the occurrence of a distress of the system, has a different
pattern in comparison with the other three measures. As shown in both figures,
the dynamics of this latter measure is strongly affected by an episode occurred to
a specific insurance in 2012.

For three over four risk metrics (i.e. with the exception of the MESj|sys), the
systemic risk of insurances is, on average, slightly higher than the risk of banks
(see the rows labeled as mean in Tables 1 and 2). On all trading days in our
observation period, the less systemic banks has a risk much lower than the less
systemic insurance (see the rows labeled as min in Tables 1 and 2). This finding
remains true across all perspectives examined in this study, even if it could be
due to the fact that the few considered insurance companies are larger than the
smallest bank in the sample. Conversely, the most systemic bank is slightly riskier
than the most systemic insurance (see the rows labeled as max in Tables 1 and 2).
However, this empirical results are not true if one looks at the MESj|sys. From the
perspective provided by this latter risk measure, the impact of the system on the
most systemic banks is much larger that the corresponding impact on most systemic
insurances. This seems to suggest that, during distress periods, the system and the
most systemic banks influence each other, even if with a different impact (i.e. on
average MESj|sys is larger than MESsys|j as reported in the rows labeled as mean
in Table 2). For most systemic insurances this only partially true: if a distress for
the system occurs, the expected loss of most systemic insurances is lower than the
expected loss of most systemic banks (see the rows labeled as max related to the
estimates of MESj|sys in Table 2).

As far as the heterogeneity across institutions is concerned, while we observe
considerable dispersion across banks, the differences in the systemic risk of insur-
ances are lower, with the exception of a specific episode occurred at single insti-
tution. These empirical findings are also motivated by the fact that there are 14
banks and only 4 insurances in our sample. The insurance companies included in
our empirical analysis have significantly higher market capitalizations compared to
some of the banks in the sample. During the analyzed period, the average total
market capitalization was 43.1 billion for the four insurance companies, 77.1 billion
for the four largest banks, and 1.5 billion for the four smallest banks.

From a visual comparison of the dynamics reported in Figures 1 with those
shown in Figures 2, it appears clear that the assumption on the variable represent-
ing the system (weighted portfolio vs index) partially affects the dynamics of the
estimates. The major differences can be observed when a distress more affecting
the financial sector occurs, like in 2016. This is also confirmed by the value of σ
reported in Tables 1 and 2, which is higher when the weighted portfolio is con-
sidered to represent the system. The levels of the risk measures computed on the
basis of the weighted portfolio are higher. This may be due to the fact that, as
observed above, the constituents of the FTSE MIB index are not only financial,
even if financial companies have a significant weight in the index. There are risk
factors affecting the behavior of the index and not related to financial companies.
We recall that by construction the companies included in the weighted portfolio
are only the institutions in the sample considered in this study, that is all listed
Italian insurances and banks.
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Figure 1: We report the time series from January 2, 2007 to September 30, 2023 of the 3-month
rolling window estimates of CoVaR=, CoVaR≤ and MES, with α = β = 0.05. We assume that
the system is represented by the capitalization-weighted portfolio of all financial institutions in
the selected sample (weighed portfolio). All values are changed in sign. On the left (right) side,
the black lines identify the maximum and minimum value reached by the insurances (banks) in
a given trading day. While the magenta (red) depicts the maximum value reached in a given
trading day by the banks (insurances) in the sample, the green (blue) depicts the minimum one.
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Figure 2: We report the time series from January 2, 2007 to September 30, 2023 of the 3-month
rolling window estimates of CoVaR=, CoVaR≤ and MES, with α = β = 0.05. . We assume that
the system is represented by the FTSE MIB index (index). All values are changed in sign. On
the left (right) side, the black lines identify the maximum and minimum value reached by the
insurances (banks) in a given trading day. While the magenta (red) depicts the maximum value
reached in a given trading day by the banks (insurances) in the sample, the green (blue) depicts
the minimum one.
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4 Conclusions

In this work we assess the systemic risk in the financial sector to monitor the po-
tential of a single institution distress to trigger a wider financial turmoil of the
system. We also measure the extent to which a distress for the system results in a
severe event for a specific institution within the system. The study focuses on Ital-
ian insurances and banks over the last 16 years with the aim to estimate systemic
risk measures belonging to the CoVaR and the MES family. The study employs a
parametric model for daily risk estimates, which simplifies both the model calibra-
tion phase and risk measure evaluations. The paper has two main objectives: to
analyze these measures behavior over time and to compare systemic risks between
insurances and banks. In this empirical analysis, we approach the comparison
from distinct perspectives. Initially, we examine the potential impact of how we
define the system on our estimations. We show that the assumption on the vari-
able representing the system (weighted portfolio vs index) plays a role in shaping
the dynamics of the estimates. Subsequently, we assess the extent to which the
systemic risk depends on the choice of risk metrics. When both CoVaR and MES
are defined based on the same conditioning event, notable discrepancies between
these two measures are not observed, and their dynamics appear almost identical.
Differently, the MES displays significant sensitivity to the specific definition of the
conditioning event (i.e. a distress for the entire system or an individual institution).
Lastly, we explore possible heterogeneity in the systemic risk of different categories
of financial institutions, specifically, insurance companies and banks. Across three
out of four risk metrics, insurance entities exhibit slightly higher systemic risk lev-
els compared to banks, on average. The least systemic banks consistently exhibit
lower risk profiles than the least systemic insurance companies. In contrast, the
most systemic bank is slightly riskier than the most systemic insurance company.
Moreover, there exists a significant degree of variability among banks, whereas the
differences in systemic risk among insurance companies are comparatively smaller.
These findings are influenced by our sample, which includes 14 banks and 4 insur-
ance firms. Throughout the analyzed period, the four largest banks have higher
market capitalizations compared to the considered insurance companies, which in
turn have much higher average market capitalizations compared to the smallest
banks.
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