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Abstract 

 
This paper addresses the issue of assessing the quality of granular datasets reported by 

banks via machine learning models. In particular, it investigates how supervised and 
unsupervised learning algorithms can exploit patterns that can be recognized in other data 
sources dealing with similar phenomena (although these phenomena are available at a different 
level of aggregation), in order to detect potential outliers to be submitted to banks for their own 
checks. The above machine learning algorithms are finally stacked in a semi-supervised fashion 
in order to enhance their individual outlier detection ability.  
The described methodology is applied to compare the granular AnaCredit dataset, firstly with 
the Balance Sheet Items statistics (BSI), and secondly with the harmonised supervisory statistics 
of the Financial Reporting (FinRep), which are compiled for the Eurosystem and the Single 
Supervisory Mechanism, respectively. In both cases, we show that the performance of the 
stacking technique, in terms of F1-score, is higher than in each algorithm alone. 
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1 Introduction1

Big-data analytics is increasingly being adopted within the community of central banks, for several purposes 

(Cagala, 2017; Chakraborty et al., 2017). An important area regards the application of machine learning 

techniques in order to improve the quality of data collected on the basis of regulatory reporting. Over the last 

few years, such surveys have become more granular and complex, in order to allow a better understanding of 

economic developments and, more in general, to improve the assessment of the actual and potential impact of 

policies on the economy2. As regards banking data, a key role is played by credit disbursement to the economy 

that, in Italy, represents more than two thirds of banks’ total assets. 

The main sources of credit data currently used at the Bank of Italy are the Eurosystem’s collection of Balance 

Sheet Items (BSI), the EU harmonized Financial Reporting (FinRep), the Italian Central Credit Register data 

(CCR) and, for a couple of years now, the Eurosystem’s granular collection AnaCredit.  

This paper investigates the possibility of building statistically founded cross-checking between the highly 

granular AnaCredit survey and the aggregated BSI and FinRep statistics by exploiting the similarities shared 

by the three surveys with respect to the phenomena that are covered. Originally, the three surveys were 

designed for different purposes and so the actual data collections follow different reporting rules and 

definitions with regard to the types of loans that are collected, the reporting population, the data model and the 

transformation rules. More importantly for our purposes, BSI and FinRep are very well established and mature 

data collections, whereas AnaCredit is quite a recent one, so it might not have achieved the same high quality 

standards of the other two yet. This is why in this paper, in defining a new set of quality checks, we try to 

exploit the information available in BSI and FinRep to improve the quality of AnaCredit data through outlier 

detection techniques. 

To set up a new set of data quality checks, the expertise of the analysts needs to be complemented with the use 

of advanced statistical tools that allow us to handle the complexity of a highly granular survey such as 

AnaCredit. In this respect, the basic idea of the paper is to resort to machine learning techniques to carry out 

systematic cross-checking between series on the same phenomena although pertaining to different data 

collections in order to identify potential outliers to be submitted to reporting banks for their own checks3. 

From a methodological point of view, we rely on machine learning methods (Bishop, 2011; Hastie et al., 2001 

and 2013) in order to overcome some of the limits recognized in the statistical literature on outlier detection 

as regards the identification of the boundary separating ‘normal’ observations from outliers. These limits are 

related both to the possibility that ‘normal behaviour’ might not be static but, rather, evolve over time and also 

to the lack of labelled data for training models (Chandola et al., 2009). Within this research field (Cusano et 

1 The authors are grateful to Gianluca Cubadda and Alessio Farcomeni (University of Tor Vergata, Rome), Francesca 
Monacelli and Roberto Sabbatini (Bank of Italy) for their useful comments and fruitful discussions on a preliminary draft 
of the paper. The views expressed herein are those of the authors and do not necessarily reflect those of the Bank of Italy. 
2 For a recent discussion see Cœuré, 2017. 
3 Namely, records that are considered anomalous because they are significantly different from the other points of the 
dataset (Aggarwal, 2017). 
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al., 2021; Zambuto et al., 2020; Farnè et al., 2018; Goldstein et al., 2016), the novelty of this paper lies in the 

development of a general approach that makes a pairwise comparison between datasets containing information 

on similar phenomena.  

We show that the proposed methodology, based on an ensemble learning technique, detects anomalies with a 

higher level of precision than the single methods used as baselines. Since anomalous observations are rare, the 

main metric considered to evaluate the performance of our developed models is the F1-score. With reference 

to this metric, the ensemble technique adopted also yields better results than the single baselines. In sum, we 

will show that the actual implementation of this methodology can contribute to improving the quality of 

AnaCredit data to the extent that the pairwise comparison with BSI and FinRep databases can lead to a more 

accurate list of potential outliers to be submitted to the cross-checking of reporting banks. It is worth remarking 

how the approach developed in this paper can be applied, more generally, to all those situations in which it is 

possible to exploit the information contained in aggregated datasets to detect potential outliers in a highly 

granular dataset. 

 

The paper is organized as follows. Section 2 describes the three datasets under consideration and the 

deterministic pre-processing treatment carried out in order to make it possible to compare the aggregated series 

available for each of them. Section 3 explores the different strategies considered for detecting outliers and 

illustrates the developed ensemble machine learning techniques within a semi-supervised setting. Section 4 

presents the results of the proposed approach. Section 5 summarizes the main conclusions, outlining the 

advantages of the proposed method and the possible directions for future research.  

2 Data  

Bank of Italy, in the context of the harmonized collections at the European level, collects aggregated credit 

information mainly within the scope of two ‘surveys’4: the monthly Balance Sheet Items (BSI), which is used 

for the common monetary policy analysis, and the quarterly Financial Reporting (FinRep) used for SSM 

supervisory purposes. Both surveys capture credit phenomena at aggregated level; different contractual forms 

of loans (i.e. overdrafts, mortgages, repurchase agreements) are added together by the amount paid out and 

then they are broken down by the relevant characteristics of the borrowers (i.e. sector and the residence) and 

by the main contractual features (currency, maturity, etc.). The global financial crisis of 2007-08 and the 

European debt crisis of 2009-10 showed that such aggregated data had been not sufficient to fulfill users’ need. 

This consideration led to the issue of Regulation (EU) 2016/867 on the collection of monthly granular credit 

and credit risk data (ECB/2016/13), the so-called AnaCredit Regulation, aimed at making available a new 

granular and multipurpose dataset containing loan-by-loan information on credit. Indeed, AnaCredit focuses 

4 For the purpose of this paper, a ‘survey’ is a collection of homogenous data for a given purpose and disciplined by a 
reporting framework. 
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on the single credit instrument issued by credit institutions, within a contract stipulated vis-à-vis a given 

borrower (Di Noia et al., 2020). The main innovation brought by AnaCredit, as compared to BSI and FinRep 

data, rely on a larger number of details, at the level of single loan granted to counterparty provided that it is 

above the reporting threshold of 25,000 euros. This new unprecedented granular credit data collection allows 

the European System of Central Banks (ESCB) to carry out its tasks having a view of the entire distribution of 

this financial phenomenon. Furthermore, this data is more suitable to shed light on lending dynamics to legal 

entities and on the accumulation of risky debts in the banking sector.  

In the following sub-sections, we describe the pre-processing steps carried out to build the two datasets used 

for our analysis. In particular, we use for our comparison only AnaCredit data starting from December 2018, 

although the first reporting date was September 2018. We decided to skip first reporting dates that, as it is 

often the case, present a very high degree of instability in terms of the quality of data, which is typically 

connected to the effective implementation and settlement of the compilation rules by reporting banks. 

2.1 AnaCredit vs. BSI 

The first comparison we carry out is between AnaCredit and BSI data collections from Italian banks. The latter 

refers to monthly aggregated stocks on assets and liabilities of Italian banks’ balance sheets and it is used to 

compile the national contribution to Eurosystem’s monetary statistics. BSI loans aggregates are based on data 

provided by reporting banks, which are then aggregated by amount according to some relevant loan 

information: the characteristics of the underlying contracts (type of instrument, duration and currency) and 

some classification variables of the contract counterparty (sector and residence). As anticipated, loans are 

particularly relevant being the core business of banks as well as the largest fraction of their assets.  

For the purpose of this work, we take into account the main BSI time series of loans broken down by original 

maturity of credit instruments, the residence and the institutional sector of the borrower. In particular, we 

consider the following breakdowns: 1) Domestic Monetary Financial Institutions (MFIs), excluding Central 

banks; 2) Domestic Central Banks; 3) Other Euro area MFIs; 4) Domestic General Government; 5) Other Euro 

area General Government; 6) Euro area Other Financial Institutions and non-Money Market investment funds; 

7) Euro area Insurance Corporations and Pension Funds; 8) Domestic Non-Financial Corporations (NFCs), 

original maturity up to 1 year; 9) Domestic NFCs, original maturity over 1 to 5 years; 10) Domestic NFCs, 

original maturity over 5 years; 11) Other Euro area NFCs, original maturity up to 1 year; 12) Other Euro area 

NFCs, original maturity over 1 to 5 years; 13) Other Euro area NFCs, original maturity over 5 years. 

The ECB and the National Central Banks (NCBs) have already developed cross-checks between BSI and 

AnaCredit based on a deterministic approach: outliers are identified when the figures of interest exceed a pre-

specified threshold that, for each BSI time series, is the same across all banks and reference dates. Typically, 

such thresholds are expressed in terms of percentage changes in the values detected in the two surveys. The 

current quality-control system would largely benefit of a statistical approach aimed at identifying acceptance 

thresholds that are bank-specific and can change over time. 
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The comparison between Anacredit and BSI surveys requires the pre-processing of their differences in order 

to make data more comparable. To this end, we build a joint dataset and then we focus on the following 

differences. Firstly, we drop out from AnaCredit all those loans that are not recognized in the bank’s individual 

balance sheet, since BSI includes only loans for which banks bear credit risk. Secondly, since AnaCredit 

contains accounting information only for end-of-quarter months, we impute the status of recognition of loans 

for the other two months of the quarter5. Thirdly, as new loans purchased on market are present in BSI at 

purchase price but in AnaCredit they are reported at nominal value, we discount the corresponding AnaCredit 

values by the difference between the nominal value and the price at the time of purchase. Fourthly, we derive 

in AnaCredit the classes of original maturity of loans present in BSI as the time between the settlement and 

the final legal maturity date of the contract expressed in years. Finally, reconciliation of data structures is 

performed in order to obtain comparable aggregates, by mapping the same subportfolio (e.g. interbank loans) 

of loans. Following the above preliminary adjustments, we can aggregate AnaCredit data by amount for the 

same bank and reference date and for the same characteristics of the BSI series, then obtaining the ‘AnaCredit 

equivalent’ specification of the 13 BSI series listed above. For both BSI and ‘AnaCredit equivalent’, the 13 

considered series are further broken down by the sector of economic activity (NACE6) of the counterparty and 

the currency of the instrument7. The comparison between the two sets of indicators is carried out over the time 

span December 2018-March 2020 (monthly observations). 

2.2 AnaCredit vs. FinRep 

FinRep is the harmonized supervisory financial reporting that each credit institution must report on a quarterly 

basis according to the instructions of Regulation EU 680/2014 (Implementing Technical Standards - ITS) and 

International Financial Reporting Standards (IFRS). FinRep comprises accounting data on assets, liabilities, 

equity and statement of profit and loss. Within the assets of the balance sheet statements, reporting banks are 

also required to provide detailed information on loans, broken down by accounting portfolio, institutional 

sector and economic activity (NACE classification) of the counterparty, type of instrument, credit quality status 

and past due bands. It is relevant to underline that we exclude from the comparison all FinRep loans referred 

to households (institutional sectors S.14 and S.15 according to ESA 2010 classification) since not in all cases 

they are reported in AnaCredit. In order to derive the counterparty sector in FinRep, we resort to the detailed 

reporting rules defined by PUMA2 documentation8.  

5 We assume that the last accounting evaluation is still valid for the non-end-of-quarter months and that all the new 
financial instruments are recognized. In general, it is quite rare that the recognition status of a financial instrument change 
from a month to another. Furthermore, the quota of new financial instrument is small and these new instruments are 
almost surely recognized. 
6 See: Statistical Classification of Economic Activities in the European Community, Rev. 2 (2008) (NACE Rev. 2). 
7 See Figures A1, A2 in Appendix A. 
8 The main goal of PUMA2 process is to generate financial information for the production of several different statistical 
and supervisory reports. PUMA2 documentation provides detailed transformation rules to generate the final statistical 
reports from a granular input layers. For more details, see https://www.cooperazionepuma.org/. 

8

http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=LST_CLS_DLD&StrNom=NACE_REV2&StrLanguageCode=EN&StrLayoutCode=HIERARCHIC
https://www.cooperazionepuma.org/


The three main measures of the accounting AnaCredit data, i.e. (1) net and gross carrying amount, (2) 

accumulated impairment amount and (3) accumulated changes in fair value due to credit risk, are compared to 

the equivalent measures of FinRep. We report some examples of disaggregated series elaborated for the 

comparison of the two dataset in Figure A3 of Appendix A. 

As for the BSI comparison, a pre-processing of data is necessary to overcome a few differences between the 

two surveys. In particular, the main information that needs to be reconciled refers to: counterparty sector; type 

of instruments; the evaluation of past-due bands; the evaluation of gross carrying amount; the evaluation of 

accumulated negative changes on fair value due to credit risk on non-performing exposures. As in the case of 

BSI, the output is a joint dataset containing FinRep series and their equivalent (reconstructed) aggregation 

based on AnaCredit data. The comparison is carried out with reference to end-of-quarter dates, over the time 

span December 2018-March 2020.  

3 Anomaly detection strategies: definitions and estimation procedures 
Our cross-checking is based on two preliminary considerations. Firstly, BSI, FinRep and AnaCredit contain 

similar information on loans; therefore, we can assume that the patterns of the series referred to the same 

phenomena are similar. Secondly, the quality of BSI and FinRep datasets is very high, as improvements have 

been introduced over many years. So we assume that the potential outliers identified on the basis of 

‘divergences’ between the compared series – BSI vs. AnaCredit and FinRep vs. AnaCredit, respectively – can 

be attributed to anomalies in AnaCredit data. The statistical approach that is followed combines supervised 

and unsupervised methods for the identification of regular patterns. In particular, for the supervised approach 

we develop a robust regression model, whereas for the unsupervised approach we resort to two autoencoder 

models. The three base models above (‘learners’) are then combined via a ‘stacking algorithm’ consisting of 

an additional classifier (‘meta-classifier’) trained on the base models’ outputs (Figure 1).  

 

Figure 1: Workflow* 
 

 
 

 * In our work only 3 learners are used as base models. 
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The meta-classifier allows us to synthesize the complementary insights derived from the different base models 

and to outperform each one of them in making the final prediction9. In particular, the meta-classifier is trained 

in a semi-supervised setting by using a dataset enriched with the binary labels ‘anomalous’ or ‘not-anomalous’ 

that, with reference to sample cases10, are attached to each observation on the basis of cross-checking with the 

intermediaries and pre-assessments based on the domain knowledge.  

It is worth anticipating that the strength of the above approach lies in its versatility in terms of use cases to 

which it can be applied and ‘learners’ that can be considered. Actually, this method can be easily adapted to 

any comparison between data collections sharing similar information and each specific base models 

(‘learners’) could be swapped with others yielding better predictions and their number can also be changed. 

It is worth noting that the prediction of the model, i.e. the list of potential outliers, refers to aggregates which 

are themselves a decomposition of BSI or FinRep aggregates. This detail allows the anomaly to be 

contextualized by elements that better explain it (such as the information that helps the reporting banks to 

identify the erroneous records in their own archives and the reasons behind the data verification request), 

allowing the intermediaries for a more effective and faster evaluation of the case.  

3.1 Robust Regressions 

As mentioned in previous paragraphs, loans to legal entities reported in AnaCredit, BSI and FinRep refer to 

the same information content, although at a different level of aggregation. The conceptual relationship between 

the phenomena, confirmed empirically by the high correlation between AnaCredit aggregates, on one side, and 

BSI and FinRep series, on the other11, can be statistically exploited within a linear regression framework. In 

our model BSI (or FinRep) series represents the independent variable, given its ascertained high level of 

quality, whereas the equivalent AnaCredit aggregate is regarded as the dependent variable. 

Despite the pre-processing steps described in Section 2 to build comparable credit statistics, there are inevitable 

and permanent structural differences between the two datasets under comparison (e.g. the reporting threshold 

effect and the exclusion of natural persons in AnaCredit). Therefore our linear regression introduces a specific 

explanatory variable to capture such structural differences. This variable is able to consider such differences 

as intrinsic and normal instead of as reporting mistakes. 

We end up with the following equation, using a log transformation of the original variables12: 

 

𝑙𝑙𝑙𝑙𝑙𝑙�𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡� = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙�𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡� +  𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙� 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡−1/𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡−1�+ 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑡𝑡 ,                                (1) 

where I denotes a bank, j a sub-portfolio of loans and t is a reference date. The AnaCredit aggregate for a 

particular sub-portfolio of loans at time t �𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡� is compared with the correspondent amount of BSI �𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡� 

9 See Lessmann et al., 2015. 
10 In future developments of this paper, data revisions could also be considered to further enrich the prior knowledge. 
11 See Figure 4 in Appendix A for the distributions of such index. 
12 For the derivation of the complete model see Appendix B.  
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(the same comparison holds for FinRep). The second explanatory variable is added to capture the definitional 

and structural differences between the datasets. The reporting mistakes remain isolated and they are contained 

only in the error component 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑡𝑡. Unfortunately, we cannot identify the structural difference at time t, because 

of the presence of (potential) reporting errors in 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡. Instead, such differences are well identified at previous 

times, t-1, t-2, etc., on the basis of the findings of the data quality validation process in those periods. For the 

sake of simplicity, our model considers only the differences at time t-1. This way, the equation (1) could be 

read as an error correction model for the cross comparison of the two aggregates at time t (for more details, 

see Appendix B). We do not consider some seasonality form in equation (1), as we have short series available: 

only 5 dates for the FinRep/AnaCredit and 16 for BSI/AnaCredit comparison. Indeed in our stock data, we do 

not observe such element to a significant extent13 (see Figures A2 and A3 in Appendix A).  

 
In an ‘ideal’ context, i.e. without anomalous data, the relationship in equation (1) would be correctly estimated. 

The presence of anomalous data in the dependent variable spoils practically this relationship. However, the 

literature on statistical robust estimation helps us to handle this issue (Hampel 1985; Hampel et al., 1986; 

Farcomeni, 2015; Gschwandtner, 2012; Maechler, 2021), as shown in Figure 2, where the logarithm of 

AnaCredit carrying amounts (y-axis) and the logarithm of FinRep carrying amounts (x-axis) for the time series 

of ‘loans versus central governments, evaluated at amortized cost’ are plotted according to classical and robust 

linear predictions. 

 
Figure 2: Classical vs. Robust regression 

 

 
 

 

The robust regression (black line) is not affected by anomalous data like high leverage data points - such as 

red dots that are lying on the x-axis- as it happens in the classical linear regression (green line). The presence 

of high leverage data points has a significant impact on the parameters of the regression. 

13 When more data is available, as future work we will be able to model also the seasonality of the series. 
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In particular, we consider the SMDM estimation proposed by Koller e Stahel (2011) that shows both high 

asymptotic efficiency and high breakdown point (BP; see Hampel et al. 1985). Furthermore, as derived in 

Appendix B we expect that the coefficients 𝛽𝛽0 and 𝛽𝛽1 should be equal, respectively, to zero and one, while the 

𝛽𝛽2 term should be less or equal to zero. Using the robust covariance matrix it is possible to test the null 

hypothesis that these conditions are met (𝛽𝛽0 = 0, 𝛽𝛽1 = 1 and 𝛽𝛽2 ≤ 0). When these conditions are not met, we 

cannot consider the corresponding regression as reliable, and then we do not analyze the correspondent 

aggregates that are compared. 

Four types of outcomes are obtained from our robust regressions (Figure 3):  

• ‘Good fit’ (top left): the regression estimates are coherent with the prior knowledge on the betas and 

the R-squared is high;  

• ‘Exact fit’ (top right): the SMDM algorithm tends to classify as ‘outlier’ those observations close to 

the regression line;  

• ‘Poor fit’ (bottom left): the robust regression is affected by a high number of leverage points (BP is 

almost at 50%);  

• ‘Broken fit’: there are more outliers than good observations (BP greater than 50%). 

 
Figure 3: Types of robust regression fit 

a - Good Fit 
(80%<R2<98%, null hypothesis for betas are not rejected) 

 

b - Exact Fit 
(R2>=98%, null hypothesis for b0, b1 and b2 may be rejected) 

 

c - Poor Fit 
(R2<80%, null hypothesis for betas are rejected) 

 
 

d - Broken fit 
(R2 low or not computable, hypothesis tests not computable) 

 
 

 

In our analysis, we face mainly the problem known as ‘exact fit’ (see, for example, Maronna et al., 2006). 

Because of the high correlation between the AnaCredit aggregates and the corresponding BSI (and FinRep) 

series, our regressions often show a very high  R-squared value (close to one), as the observed points are 

concentrated around a very small radius of the regression line. As a consequence, even in presence of a small 
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distance between an observed point and the regression line, that observation is marked as an outlier although 

it does not show an anomalous behavior. This is due to the fact that the distance is greater than the one 

recognized as ‘normal’ by the model in such situation. A second consequence has to do with the impossibility 

to perform reliable tests of hypotheses on the regression coefficients, as the robust estimates of their standard 

errors are close to zero, leading to the wrong rejection of the theoretically expected relationship (i.e. the model 

under the null hypothesis) when instead it should be regarded as valid. 

 

To cope with the cases of exact fit, together with the cases of ‘poor fit’ and ‘broken fit’ when outliers are 

clustered (see Figures 4 and 5), we investigate three possible solutions: 

(1) resorting to the ‘Bonferroni correction’ for the chi-squared test of residuals (see Cerioli and 

Farcomeni, 2011); 

(2) adding Gaussian noise to the dependent variable (a procedure known as jittering); 

(3) de-noising through the removal of observations (a procedure known as thinning; see Cerioli and 

Perrotta, 2013). 

Approach (1) relies on the assumption that the squared regression residuals follow approximately a chi-squared 

distribution with one degree of freedom. As discussed in Cerioli and Farcomeni (2011), in order to control for 

the probability of making one or more false rejections, a simple but effective method is to adopt the ‘Bonferroni 

correction’ for the confidence level over the sample size α/n. The observation is labelled as outlier if the 

statistics 𝑇𝑇𝑖𝑖𝑗𝑗𝑡𝑡 = �̂�𝑒𝑖𝑖𝑗𝑗𝑡𝑡2  > 𝜒𝜒(1−𝛼𝛼/𝑛𝑛,1)
2 .  

Strategy (2) consists in adding a Gaussian random noise 𝜀𝜀, 𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎𝜀𝜀), to the dependent variable and, then, 

perform a robust regression on the new transformed variable. For the calibration of 𝜎𝜎𝜀𝜀, first we run a robust 

regression without adding noise and compute the Mean Absolute Deviation (MAD) of residuals, then we 

multiply it by a constant factor 𝑘𝑘, considering a floor positive value 𝛿𝛿: 𝜎𝜎𝜀𝜀 = min �𝛿𝛿,𝑘𝑘 ∗ 𝑀𝑀𝐴𝐴𝑀𝑀��̂�𝑒𝑖𝑖𝑗𝑗𝑡𝑡��. The 

empirical values of 𝑘𝑘 and 𝛿𝛿 depend on the nature of the datasets under inspection: in this application, according 

to the abovementioned literature, we use 𝛿𝛿 ≥ 0.1 and 𝑘𝑘 𝜖𝜖 [1.48;  5]. 

Finally, the procedure (3) consists in removing observations in order to down-weight the influence of high-

density regions. To this end, it is necessary to define and evaluate a retain probability for each observation 

{𝑦𝑦𝑖𝑖, 𝑥𝑥𝑖𝑖}, i.e. the logarithm of 𝐴𝐴𝑖𝑖𝑗𝑗𝑡𝑡 and 𝐹𝐹𝑖𝑖𝑗𝑗𝑡𝑡. Following Cerioli and Perrotta (2013), we consider the retain 

probability 𝑝𝑝(𝑦𝑦𝑖𝑖 , 𝑥𝑥𝑖𝑖) ∝ 1 −  𝜆𝜆𝑑𝑑(𝑦𝑦𝑖𝑖, 𝑥𝑥𝑖𝑖), so that points will be deleted mainly in high-density regions; for the 

estimation of 𝜆𝜆𝑑𝑑(. ) we use the same isotropic Gaussian kernel14 introduced by the authors. 

To detect outliers from procedure (2) and (3) we apply the chi-square test as defined in (1). 

The ‘exact fit’ problem is well addressed by all the three solutions, as shown in Figure 4, where panel a 

illustrates the standard robust regression and panels a1 to a3 indicate the corresponding, robust regression 

when applying the three abovementioned strategies, respectively.  

14 For its implementation, see function density.ppp of R package ‘spatstat’. 
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Figure 4: Solving ‘exact fit’ issue 
a -Exact Fit 

(R2>=98%, null hypothesis for b0, b1 and b2 may be rejected)  

 

a1-Exact Fit with chi-square test correction 
(alpha 5%) 

 

a2-Exact Fit with jittering – chi-square test correction 
(alpha 5%) 

 
 

a3-Exact Fit with thinning – chi-square test correction 
(alpha 5%) 

 
 

 

The thinning procedure also allows to handle ‘broken’ and ‘poor’ fits (Figure 5): when extreme observations 

are clustered, the expected regression lines are correctly estimated both for ‘broken fits’ and for ‘poor fits’, 

allowing to correctly evaluate the hypothesis of presence of outliers. 

 
Figure 5: Solving ‘poor fit’ and ‘broken fit’ cases 

a - Poor Fit 
 (R2<80%, null hypothesis for betas are rejected) 

 

a1- Poor Fit: thinning with chi-square test correction 
(alpha 5%) 

 
b - Broken Fit 

(R2 low or not computable, hypothesis tests not computable) 

 
 

b1- Broken Fit: thinning with chi-square test correction 
(alpha 5%) 
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Since the series analyzed are different in terms of sample sizes, variance of residuals and level of 

contamination, and since each of the three methodologies has its own pros and cons, in order to take most out 

of them, we apply them according to the following hierarchical order: 

i) we run the jittering procedure, check that the null hypothesis for 𝛽𝛽0�, 𝛽𝛽1�, and 𝛽𝛽2� is not rejected and the 

R-squared is above 80%. If such conditions are met, we classify the observation as an outlier or not 

on the basis of the chi-square test on residuals; if not, we move to (ii); 

ii) we run the standard robust regression, check that the null hypothesis for 𝛽𝛽0�, 𝛽𝛽1�, and 𝛽𝛽2� is not rejected 

and the R-squared is above 80%. If such conditions are met, we classify the observation as an outlier 

or not on the basis of the chi-square test on residuals; if not, we move to (iii); 

iii) we run the thinning procedure, check that null hypothesis for 𝛽𝛽0�, 𝛽𝛽1�, and 𝛽𝛽2� is not rejected and the R-

squared is above 80%. If such conditions are met, then we classify the observation as outlier or not on 

the basis of the chi-square test on residuals; if not, we do not evaluate the observation. 

 

Finally, in order to put the results of the robust regression in stacking with those of other models, we introduce 

a measure of anomaly for each data point inspected (score). Such scores are obtained by applying a min-max 

scaler to the absolute value of residuals of each ‘acceptable’ regression (i.e. that satisfies the conditions above). 

In Figure 6 the final scores of all the series for the BSI-AnaCredit and FinRep-AnaCredit comparison are 

reported. 

Figure 6: Scores distributions 
BSI-AnaCredit 

 

 
 

FinRep-AnaCredit 
 

 
 

3.2 Autoencoders 

An autoencoder (AE) is a special type of multi-layer neural network performing hierarchical and nonlinear 

dimensionality reduction of data. The goal of an autoencoder is to replicate a given input as an output. 

Therefore, the output is the input itself, reconstructed. Typically, the model architecture is layered and 

symmetric, with the same number of nodes in the output and in the input layer, while nodes in middle layers 

are fewer in number. Therefore, the only way to reconstruct the input is by learning weights so that the 

intermediate outputs of the nodes in the middle layers consist in reduced representations. Figure 7 illustrates a 

fully connected autoencoder architecture. 
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Figure 7: Autoencoder architecture 
 

 
 

 

Autoencoders are unsupervised models, as they do not need labels since the target variable is the input itself. 

Note that the outputs of the bottleneck layer represent the reduced representation, also known as ‘compressed 

representation’. 

Because of its reduced representation of data, autoencoders represent a useful approach to detect outliers 

(Russo et al. 2019). The basic idea is that, in such dimensionality reduction, it is much harder to reproduce 

outliers than inliers (normal points), so the error of outliers’ reconstruction will be larger and, therefore, better 

identifiable. 

Formally, autoencoders attempt to reconstruct an input image 𝑥𝑥 ∈ 𝑅𝑅𝑘𝑘×ℎ×𝑤𝑤 through a bottleneck, effectively 

projecting the input (image) into a lower-dimensional space, called ‘latent space’. The projection 

(dimensionality reduction) occurs through an encoder function 𝐸𝐸:𝑅𝑅𝑘𝑘×ℎ×𝑤𝑤 → 𝑅𝑅𝑑𝑑 and the reconstruction 

through an inverse decoder function D:𝑅𝑅𝑑𝑑 → 𝑅𝑅𝑘𝑘×ℎ×𝑤𝑤, where d denotes the dimensionality of the latent space 

and k, h and w denote, respectively, the number of channels (equal to 3 in the case of Red, Green and Blue - 

RGB – images, to 1 for grayscale images), the height and the width of the input image. Choosing 𝑑𝑑 ≪ 𝑘𝑘 × ℎ ×

𝑤𝑤 prevents the architecture from simply copying its input and forces the encoder to extract meaningful features 

from the input patches that facilitate accurate reconstruction by the decoder. The overall process can be 

summarized as 

𝑥𝑥� = 𝑀𝑀�𝐸𝐸(𝑥𝑥)� = 𝑀𝑀(𝑧𝑧),                                                               (2) 

where z is the latent vector and 𝑥𝑥 � the reconstruction of the input x. In our project, two models parameterize the 

functions E and D: the convolutional autoencoder (AE-CNN) and the dense autoencoder (AE-DNN). In the 

AE-CNN, ‘strided’ convolutions are used to downsample the input feature maps in the encoder and to 

upsample them in the decoder, while in the AE-DNN, dense layers are used for the same tasks. 

We propose to measure the reconstruction accuracy with the Structural Similarity Index Metric (SSIM), as in 

Wang et al. (2004). This measure is designed to capture perceptual similarity; it captures inter-dependencies 

between local pixel regions that are disregarded by the current state-of-the-art unsupervised defect 

Original image

X Z 𝑋�

Reconstructed image
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segmentation methods based on autoencoders with per-pixel losses. The measure is not very sensitive to edge 

alignment and attaches importance to salient differences between input and its re-construction. The SSIM 

works in the spatial domain and, given two image patches 𝑥𝑥 = {𝑥𝑥𝑖𝑖|𝑖𝑖 = 1, … ,𝑃𝑃} and 𝑦𝑦 = {𝑦𝑦𝑖𝑖|𝑖𝑖 = 1, … ,𝑃𝑃}, it is 

defined as 

𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝑥𝑥,𝑦𝑦) = �2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝑐𝑐1��2𝜎𝜎𝑥𝑥𝑦𝑦+𝑐𝑐2�
�𝜇𝜇𝑥𝑥2𝜇𝜇𝑦𝑦2+𝑐𝑐1��𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝑐𝑐2�

,                                                        (3) 

where 𝜇𝜇,𝜎𝜎 are, respectively, the sample mean and sample standard deviation, 𝜎𝜎𝑥𝑥𝑥𝑥 is the sample covariance 

between x and y and (𝑐𝑐1, 𝑐𝑐2) are two positive stabilizing constants. The resultant SSIM index is a real value 

that could be normalized within the range [0, 1], where 1 indicates perfect structural similarity that can be 

achieved only in case of two identical sets of data, while 0 denotes the absence of any degree of structural 

similarity. Following this approach, a loss function is derived as a mean of structural dissimilarity indexes 

(DSSIM), i.e. as the mean of the complement to 1 of the SSIM15 over all images 

ℒ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆) = 1
𝑁𝑁
∑ �1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀(𝑖𝑖, 𝚤𝚤)̂�𝑖𝑖𝑖𝑖𝑆𝑆 ,                                                      (4) 

where I is the set of all images. This loss function is used for AE-CCN models, while in the case of AE-DNNs 

the mean square error (MSE) is used. 

The key idea of our model is to train an autoencoder on BSI (and FinRep) data in order to learn their ‘normal’ 

structure and to use it to identify abnormal structures (i.e. anomalous data) in AnaCredit. This method provides 

an overall assessment of all data reported by each bank for a given reference date. The identification of the 

reporting components that are anomalous occurs based on a score function, as described below. 

The input data for the two neural networks are, respectively, the complete report of all series of a bank at a 

given reference date for the AE-DNN and their transformation in image for the AE-CNN. To create the image 

we use the collected scaled data to derive the auto cross-product: the result of this operation is a matrix whose 

elements are in the [0, 1] range. This matrix can be regarded as an image in grey scale where each pixel is 

originated from each value of the matrix; each value of the matrix gives the grey level to color the pixel. The 

entries of the matrix have also a statistical meaning: each element gives the contribution of the interaction of 

the single component of the data collected with respect to the others. The final selected architecture is different 

for AE-DNN and AE-CNN. In the case of AE-DNN, the encoder and decoder networks consist of 2 fully-

connected layers with respectively 150 and 28 hidden units, with LeakyReLU as activation function. The first 

layer also contains a dropout (Srivastava et al., 2014) of 5%. The bottleneck layer is set as one fully connected 

layer with 20 hidden units, resulting in a 20-dimensional latent space. 

In the case of AE-CNN, the encoder and decoder networks are comprised of convolutional layers with batch 

normalization and a max-pooling window of 2x2 after each convolution. The sigmoid as activation function is 

15 For more details, see Brunet et al. (2012). 
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used and the padding to reproduce the same dimensions. The encoder network is structured in a stack of three 

hidden layers with convolutional filters of respectively 16, 32, 16 units and kernel sizes of 3x3. The bottleneck 

consists of a convolutional layer with 4 convolutional filters of 23x23 size. Regarding the decoder network, its 

structure mirrors the encoding part having an up-sampling step in substitution of the max-pooling.  

Training these two networks on BSI (and FinRep) dataset, which we assume are of a better quality, generates 

a distribution of the losses (MSE or DSSIM) associated with the entire dataset reported by each bank. This 

distribution is compared with the one derived from the application of the model to the AnaCredit dataset. 

Figure 8 illustrates, as an example, the loss distributions (and relative cumulative distribution functions) 

obtained by training the AE-CNN model on BSI and then applying it to AnaCredit. Similar distributions occur 

for the comparison between AnaCredit and FinRep and in the cases of AE-DNN networks. For low values of 

the dissimilarity index the two distributions overlap, as expected, while for high values we observe the 

difference that need to be investigated. 

 

Figure 8: Structural dissimilarity index 
 

 
 

 
The distribution of DSSIM or normalized MSE16 helps to label as anomalous or not anomalous the whole set 

of AnaCredit data reported by each bank at a reference date, but it does not provide information on what 

components (i.e. which of the BSI and the FinRep series) have contributed the most to such result. To this end, 

we consider a score function mixing the loss function (DSSIM or normalized RMSE - l) value with the absolute 

relative difference (f) between pairs of BSI (and FinRep) and equivalent AnaCredit series: 

                                                    𝑠𝑠(𝑙𝑙,𝑓𝑓) = 𝑙𝑙 ∙ 𝑓𝑓2                                                                     (5) 

16 We normalize the RMSE with the mean to obtain the coefficient of variation. 
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where 𝑙𝑙 is the generic loss function for the model considered and 𝑓𝑓 is the absolute relative difference between 

a generic BSI (and FinRep) aggregate and the equivalent AnaCredit, considered squared to emphasize big 

differences. Such a defined score function allows weighing the global evaluation (loss function) over all the 

pairwise comparisons. Besides, we rescale the score values in the interval [0, 1] to have a normalized score, 

which can be compared to those produced by the other models developed.  

Such normalized scores (see Figure 9) allow discriminating between good (low score values) and anomalous 

data (high score values).  

 

Figure 9: Scores’distributions 
BSI-AnaCredit – AE-DNN 

 

FinRep-AnaCredit – AE-DNN 

 
BSI-AnaCredit – AE-CNN 

 

 
 

FinRep-AnaCredit – AE-CNN 
 

 
 

 
In the following steps, the scores obtained above are used as input to the stacking models. 

3.3 Stacking predictions in a semi-supervised learning setting 

After training the basic models, for each observation (combination of reference date, reporting entity and 

compared aggregate) we have three anomaly scores, two produced by the autoencoders and one by the robust 

regression: these are the final predictions that are input to the meta-learners. 

The robust regression scores exhibit low correlation with the autoencoders’ scores, while the two autoencoders’ 

scores do not have remarkable correlation among them. This is a common result in the two joint datasets 

(Figure 10). As the scores within the two comparisons map different information, they are combined together 

to produce a final forecast. 
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The combination takes place with the stacking technique (Wolpert, 1992; Dzeroski and Zenko, 2004), i.e. 

through a meta-learner using the abovementioned scores (predictions) as input for its forecast (Figure 1). 

 
Figure 10: Correlation between learners’ scores 

AnaCredit-BSI 

 

AnaCredit-FinRep 

 

 

Stacking models typically yields a better performance than each of the input learners. Stacking models require 

the existence of labels, i.e. a response variable that is attempted to replicate. To get a response variable, some 

cases have been sampled and verified with banks, while others have been pre-labelled on the basis of the 

domain knowledge of the analysts. Such information is bound to learner scores, obtaining a final partially 

labelled dataset on which we can train meta-learners in a semi-supervised learning paradigm (Chapelle et al., 

2006; González et al., 2019). 

With regard to the pre-labeling, based on domain knowledge, we mark as ‘correct’ (label 0) observations for 

which the difference between the amounts in BSI (FinRep) and the corresponding amounts in AnaCredit is 

deemed very small. In addition, we have marked as ‘anomalous’ (label 1) those for which the same distance is 

far negative, i.e. less than a chosen percentile of the empirical distribution. 

The sampled cases are selected following a stratified sampling approach using the Neyman’s optimal criterion 

(Neyman, 1934). The stratification is obtained by considering the joint distribution of the scores appropriately 

discretized in binary values17, so that each observation is classified to a specific stratum. Neyman's optimal 

criterion is used with reference to the different variability of the average scores and to the sampling cost of 

each stratum, the latter being inversely proportional to the median distance of the difference between the 

amount of BSI (and FinRep) and the corresponding amount of AnaCredit. At this step, the sample size remains 

determined18 and the units are selected within each stratum with simple random sampling without replacement. 

Each sampled unit is analyzed with the bank that has reported it and this leads to the attribution of a response 

(R) that confirms or not the correctness of the AnaCredit data. 

 

17 The scores are converted into binary coding, choosing the value of 0.2 as threshold. 
18 For more details, see Table A1 in Appendix A. 
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Moving to the meta-learners, two different semi-supervised approaches are considered. Following the first 

semi-supervised approach, we develop and compare models in a context where the sample distribution of 

anomalous and not-anomalous cases within strata based on responses received have been previously reported 

to the universe of observations. In the second semi-supervised approach, the reporting of the sample responses 

to the universe and the estimation of the parameters of the models occurs in the training phase. 

In the first setting, the completion of the labeling is performed following a Monte Carlo simulation approach. 

Pseudo labels (i.e. simulated responses) to the not-sampled and not-pre-labelled observations are assigned 

randomly by replicating the sample distribution of the responses received by banks within each stratum. By 

repeating this pseudo labeling over a sufficiently high number of times (we choose N = 1000), we obtain a 

dataset with this set of pseudo response variables, where each is composed by sampled/pre-evaluated labels 

(R) and simulated labels (Z).  

On this enriched dataset, we train four different meta-learners: a logistic regression (LOGIT), a k-nearest 

neighbor (KNN), a random forest (RF) and a support vector machine (SVM). Each of these models has been 

optimized by cross-validation and the training is performed over the N simulated response variables. The final 

prediction is obtained as the central value of the N simulated predictions. 

In this way, for a given reference date t and with respect to each bank i and sub-portfolio of loans j, we train 

four different models on the full vector of responses (R and Z) able to combine the predictions of the underlying 

scores exploiting different combination paths. Afterwards, we compare the model predictions and choose the 

best one with regard to some appropriate reference measures19. F1-score is our preferred reference measure to 

address the issue of the unbalanced classes (of 0 and 1) in the variables R and Y, but we provide the results  

also obtained for other measures, e.g. precision rate, recall, etc. 

As regards the LOGIT, denoting by 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑡𝑡 = Pr (𝑌𝑌�𝑖𝑖,𝑗𝑗,𝑡𝑡 = 1) the probability of an observation to be an outlier, 

where i, j, t represent, respectively, a bank, a sub-portfolio of loans and a given reference date, the model is 

described by the following equation: 

 𝑙𝑙𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑡𝑡

1−𝑝𝑝𝑖𝑖,𝑗𝑗,𝑡𝑡
= 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑐𝑐𝑙𝑙𝑆𝑆𝑒𝑒𝑅𝑅𝑙𝑙𝑆𝑆𝑅𝑅𝑒𝑒𝑙𝑙𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝛽𝛽2𝑆𝑆𝑐𝑐𝑙𝑙𝑆𝑆𝑒𝑒𝑆𝑆𝑁𝑁𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝛽𝛽3𝑆𝑆𝑐𝑐𝑙𝑙𝑆𝑆𝑒𝑒𝑀𝑀𝑁𝑁𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 + Θγ + 𝜀𝜀𝑖𝑖,𝑗𝑗,𝑡𝑡,     (6) 

where Θ is a vector of control variables, i.e. dummy variables for the identification of re-aggregations of the 

analyzed aggregated series, and 𝜀𝜀𝑖𝑖,𝑗𝑗,𝑡𝑡  is the noise term. In order to train the meta-learner, we use the weighted 

accuracy - with optimal weights20 chosen for non-anomalous and anomalous data respectively - to cope with 

the imbalance in the responses. The optimal weights are obtained at the maximum value of the average F1-

score calculated on the training set by employing the five-fold cross validation. 

As regards the other three models, the generic function describing each of them is:  

19 See Figure A5 in Appendix A. 
20 See more details in Figure A6 in Appendix A. 
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𝑌𝑌�𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝑓𝑓�𝑆𝑆𝑐𝑐𝑙𝑙𝑆𝑆𝑒𝑒𝑅𝑅𝑙𝑙𝑆𝑆𝑅𝑅𝑒𝑒𝑙𝑙𝑖𝑖,𝑗𝑗,𝑡𝑡 ,𝑆𝑆𝑐𝑐𝑙𝑙𝑆𝑆𝑒𝑒𝑆𝑆𝑁𝑁𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 ,𝑆𝑆𝑐𝑐𝑙𝑙𝑆𝑆𝑒𝑒𝑀𝑀𝑁𝑁𝑁𝑁𝑖𝑖,𝑗𝑗,𝑡𝑡 ,Θ� + 𝜀𝜀𝑖𝑖,𝑗𝑗,𝑡𝑡,                      (7) 

where 𝑓𝑓(∙) is a different function based on the model type and 𝜀𝜀𝑖𝑖,𝑗𝑗,𝑡𝑡  is the noise term. Also for these models, 

the meta-parameters are calibrated on the training set by employing the five-fold cross validation, maximizing 

the average F1-score. 

 

In the second setting, semi-supervised models for the equation 7 are trained by using only the sampled and 

pre-labelled variable (R) instead of 𝑌𝑌�, as the labeling is carried out within the model estimation process. In this 

class of models, the following algorithms have been used: Self-training, SETRED, Tri-training, Co-Bagging 

and Democratic-Co. 

The Self-training model (Yarowsky, 1995) is probably the earliest idea about using unlabelled data in 

classification. This wrapper-algorithm, starting from only the labelled data, iteratively uses a supervised 

learning method trained only on the part of the dataset labelled until the current iteration. At each step, it labels 

a part of the unlabelled points according to the current decision function until the whole dataset is labelled. 

Similarly, the SETRED algorithm (Li and Zhou, 2005) first learns from labelled examples, and then iteratively 

chooses to label a few unlabelled cases on which the learner is most confident in prediction and adds them to 

its labelled set for further training at next step. However, at each iteration SETRED does not completely accept 

all the pre self-labelled examples, but it actively identifies the possibly mislabelled examples by testing a 

predefined null hypothesis with the local cut edge weight statistic associated with each self-labelled example. 

If the result of the test falls in a left rejection, the example is regarded as a good one; otherwise, it is a possible 

mislabelled example and it should not be included to the learner’s training set.  

The Tri-training algorithm (Zhou and Li, 2005) generates three classifiers from the original labelled set and 

labels an unlabelled observation if the other two classifiers agree on the labeling, under certain conditions. 

This procedure is repeated until convergence (generally with the complete labeling of the dataset). 

The Co-Bagging method (Blum and Mitchell, 1998) assumes that the feature space can be split into two 

different conditionally independent views and that each view is able to predict the classes on its own. It trains 

one classifier in each specific view, and then the classifiers learn from each other the most confidently predicted 

examples from the unlabelled pool. The process continues until a predefined number of iterations is reached. 

The Democratic-Co algorithm (Zhou and Goldman, 2004) uses multiple algorithms, instead of multiple views, 

to enable learners to label data from each other. This technique leverages off the fact that different learning 

algorithms have different inductive biases and that better predictions can be made by the majority vote. 

In the next Section, we present the empirical results of the abovementioned models. 
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4 Results and discussion 

The empirical results of the models introduced in the previous section are presented in the following two sub-

sections, the first devoted to the comparison between AnaCredit and BSI, the second to that between AnaCredit 

and FinRep. 

4.1 BSI vs. AnaCredit: empirical evaluation 

The data dimension used for training and testing the models are reported in Table 1. 

Table 1: Observations in training and test set  

  
1° semi-supervised 

setting 
2° semi-supervised 

setting 
Training  5440 6199 

Test 2331 1572 
Total 7771 7771 

 

The different size of the training and the test sets in the two approaches derives from the fact that in the first 

setting labels are available for all observations, being simulated via Monte Carlo. In the second setting, we 

need to consider only labelled observations in the test set; therefore, we assign all unlabelled observations to 

the training set and then split the pre-labelled observation between training and test set according to a 50% 

share. 

 

Before evaluating the meta-learners, we measure the performance of the three learners (basic models) with 

standard performance metrics together with the balanced accuracy (in order to take into account the imbalance 

of the target variable Y in our dataset). Table 2 presents the performance metric results that can also be 

considered as benchmarks for the meta-learners results, presented in Section 3. 

 
Table 2: Performance of the base models (learners) 

 Sample cases 
  RobReg DNN CNN 
    

Precision 0.09507 0.82353 1.00000 
Recall 0.04500 0.02333 0.01333 

Specificity 0.79965 0.81260 0.81122 
Accuracy 0.73601 0.81266 0.81170 
F1 score 0.06109 0.04538 0.02632 

Balanced accuracy 0.42233 0.41797 0.41228 
 
All the metrics considered in Table 2 are evaluated on a test set representing 30% of the available data. The 

Table clearly shows that the three basic models RobReg, DNN and CNN perform quite well in terms of 

accuracy, with values equal to 0.736, 0.813 and 0.811, respectively.. Unfortunately, since our input dataset is 
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biased towards non-anomalous cases (0.79 and 0.21) in Y variable, such models perform poorly when metrics 

taking into account the imbalance are considered: for instance, the balanced accuracy drops to 0.422, 0.418, 

and 0.412, respectively. 

To strengthen the power of prediction of our models, a stacking step is further considered. In the first place, a 

baseline logistic model combining the predictions of the three basic models only on the sampled and pre-

labelled data is developed. In particular, this baseline model is trained with a weighted accuracy in order to 

take into account the imbalance between non-anomalous and anomalous cases. Such model presents the 

following main results (Table 3): the F1 score is 0.997, the balanced accuracy 0.998, the precision 0.981 and 

the recall 0.988.  

The performance over all the dataset is presented in Table 3 that shows the central values of the different meta-

learners trained on the 1000 simulated pseudo labels. 

 

Table 3: Performance of the models within the first semi-supervised setting 
  Baseline* LOGIT1 KNN RF SVM 
  

Precision 0.981±0.019 0.901±0.016 0.848±0.014 0.864±0.018 0.830±0.021 
Recall 0.988±0.011 0.433±0.161 0.459±0.016 0.463±0.014 0.514±0.017 

Specificity 0.994±0.006 0.867±0.003 0.871±0.003 0.872±0.003 0.882±0.004 
Accuracy 0.997±0.003 0.870±0.004 0.869±0.004 0.872±0.004 0.876±0.005 
F1 score 0.997±0.002 0.585±0.017 0.596±0.015 0.603±0.015 0.635±0.017 

Balanced accuracy 0.998±0.001 0.650±0.009 0.665±0.009 0.668±0.009 0.698±0.010 
* Only on sampled cases. 

 
All the metrics are evaluated on five test sets, each representing 30% of the data and obtained setting a different 

random seed: the central value of the different metrics is reported together with the deviation of this value from 

the minimum and maximum, in order to assess metrics’ variability. The linear SVM yields somewhat better 

results in terms of F1 score and balanced accuracy when trying to replicate the baseline. 

 

As regards the second setting of semi-supervised algorithms, the results highlighting their performances are 

shown in the following table: 

 

Table 4: Performance of the models within the second semi-supervised setting 
  Self-training SETRED Tri-training Co-Bagging Democratic-Co 
  

Precision 0.995±0.005 0.993±0.007 0.993±0.007 0.989±0.004 0.993±0.007 
Recall 0.995±0.005 0.988±0.012 0.987±0.011 0.995±0.005 0.989±0.008 

Specificity 0.999±0.001 0.997±0.003 0.997±0.002 0.999±0.001 0.997±0.002 
Accuracy 0.998±0.001 0.997±0.000 0.997±0.000 0.997±0.000 0.997±0.000 
F1 score 0.995±0.003 0.991±0.003 0.991±0.002 0.992±0.002 0.992±0.002 

Balanced accuracy 0.997±0.003 0.993±0.007 0.992±0.007 0.997±0.003 0.993±0.005 
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All the models use the support vector machine as learner (Democratic-Co use also a KNN and a C5.0) and all 

the metrics are evaluated on the test presented in Table 1. Additional four runs using different random seeds 

are used to generate new training and test sets, in order to assess metrics’ variability. Based on the F1 score, 

the best performer is the self-training algorithm, showing a central value of 99.5%. If we compare it to the 

baseline model, we find a good replication in the F1-score and better results in terms of precision and recall. 

Pairwise comparison of the various models is carried out by using the McNemar’s Test for binary 

classification. Table 5 contains the p-values for the null hypothesis that two models do not have significant 

differences in their label predictions. A small p-value denotes that there is a statistical significant difference in 

the power of prediction between the two models. 

 

Table 5: Predictions comparison (*) 

  Self-training SETRED Tri-training Co-Bagging Democratic-Co 

Self-training        0.009          0.138          0.003       0.013  
SETRED             0.269          0.000       0.251  

Tri-training               0.002       0.025  
Co-Bagging              0.000  

Democratic-Co           

(*) P-value mean over the five test set. A p-value lower than 0.05 indicates a significant 

disagreement between the model predictions. 

 

Table 5 shows that the self-training predictions are statistically equivalent to the tri-training ones. Since the 

self-training model gets the higher F1-score, and all the differences with SETRED, Co-Bagging and 

Democratic-Co are statistically different from zero, we can conclude that the self-training model is the best 

performer. 

4.2 FinRep vs. AnaCredit: empirical evaluation 

The data dimension used for the training and test set are reported in Table 6.  

 

Table 6: Observations in training and test set  

  

 
1° semi-

supervised 
setting 

 
2° semi-supervised 

setting 
Training  26035 29680 

Test 11201 7656 
Total 37336 37336 

 

25



As in the BSI comparison, the different size of the training and the test sets in the two approaches derive from 

the constraint of assigning, in the second semi-supervised setting, a share of 50% of pre-labelled observations 

to the test set and the rest of observations to the training set, while in the first setting it is not present. 

 
In this case, we have a greater number compared to the BSI-AnaCredit case due to more disaggregated series 

considered in FinRep. As for BSI-AnaCredit, we first measure the performance of the three underlying models 

with standard performance metrics together with the balanced accuracy (imbalance of target variable Y). The 

results, reported in Table 7, are useful in terms of benchmark to the meta-learners presented in Section 3. 

 

Table 7: Performance of the base models (learners) 
  RobReg DNN CNN 
   

Precision 0.05330 0.83333 0.75000 
Recall 0.05263 0.00283 0.00170 

Specificity 0.82913 0.84726 0.84711 
Accuracy 0.71184 0.84725 0.84708 
F1 score 0.05296 0.00564 0.00339 

Balanced accuracy 0.44088 0.42505 0.42441 
 

All the metrics are evaluated on the test set representing 30% of the available data. The Table clearly shows 

that the three models RobReg, DNN and CNN perform quite well in terms of accuracy, with values equal to 

0.712, 0.847 and 0.847, respectively. Therefore, their predictive capacity, considering the two classes of 

anomalous and non-anomalous data at the same time, is quite high. However, the dataset we are considering 

is unbalanced towards anomalous cases (only 16%). When we move to measures that take into account such 

imbalance, their performance decreases; for instance, the balanced accuracy falls to 0.441, 0.425, and 0.424, 

respectively.  

Moving to the stacking step, the results of the performance measures for a weighted logistic baseline (only on 

sampled and pre-labelled data) and for LOGIT, RF, KNN and linear SVM models (over all the dataset) are 

reported in Table 8.  

Table 8: Performance of the models within the first semi-supervised setting 
  Baseline* LOGIT KNN RF SVM 
  

Precision 0.998±0.002 0.833±0.008 0.501±0.005 0.747±0.010 0.503±0.006 
Recall 0.999±0.001 0.367±0.009 0.204±0.004 0.434±0.008 0.380±0.013 

Specificity 0.996±0.004 0.890±0.002 0.860±0.002 0.899±0.001 0.884±0.002 
Accuracy 0.998±0.003 0.886±0.002 0.836±0.002 0.885±0.002 0.837±0.002 
F1 score 0.997±0.003 0.508±0.009 0.290±0.005 0.548±0.009 0.432±0.010 

Balanced accuracy 0.997±0.003 0.628±0.005 0.532±0.002 0.667±0.005 0.631±0.006 
* Only on sampled cases. 

 

All the metrics are evaluated on five test sets, each representing 30% of the data, obtained by setting a different 

random seed; the central value over the five test sets is reported for the different metrics and the deviation of 
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this value from the minimum and maximum value so as to assess metrics’ variability. The various models 

attempt to replicate the baseline; although far from it, the model with the best results is the random forest, with 

an F1-score equal to 0.548 and a high precision of 0.747. 

 

As regards the second approach of semi-supervised algorithms, the results highlighting their performances are 

shown in Table 9. 

 

Table 9: Performance of the models within the second semi-supervised setting 
  Self-training SETRED Tri-training Co-Bagging Democratic-Co 
  

Precision 0.723±0.167 0.929±0.072 0.825±0.075 0.825±0.075 0.833±0.001 
Recall 0.513±0.058 0.487±0.058 0.504±0.042 0.523±0.023 0.179±0.179 

Specificity 0.605±0.079 0.656±0.106 0.653±0.097 0.653±0.097 0.500±0.107 
Accuracy 0.697±0.054 0.733±0.054 0.715±0.036 0.715±0.036 0.518±0.125 
F1 score 0.598±0.098 0.634±0.034 0.634±0.034 0.650±0.018 0.500±0.001 

Balanced accuracy 0.563±0.065 0.582±0.072 0.595±0.053 0.595±0.053 0.335±0.139 
 
All the models use C5.0 as learner (Democratic-Co use also a KNN and a SVM) and all the metrics are 

evaluated on the test presented in Table 6. Additional four runs using different random seeds are used to 

generate new training and test sets in order to assess metrics’ variability. According to the F1-score, Co-

Bagging is the best performers, followed by the SETRED and Tri-training algorithms. 

Pairwise comparisons of various models is carried out by using the nonparametric McNemar’s Test for binary 

classification. Table 10 contains the p-values for the null hypothesis that each pair of models does not show 

significant differences in their label predictions. A small p-value denotes a significant difference 

(improvement) in the prediction between the two models. Results reported in Table 10 show that the 

predictions of Co-Bagging is equivalent to the others. Therefore, there is not a clear winner from this 

competition and the Co-Bagging, SETRED and Tri-training algorithm seems to be equally efficient. Only the 

Democratic-co presents a rather poor performance. 

 

Table 10: Predictions comparison (*) 

  Self-training SETRED Tri-training Co-Bagging Democratic-Co 

Self-training        0.473         0.787         0.833                0.080  
SETRED            0.488         0.573                0.184  

Tri-training              0.500                0.089  
Co-Bagging                       0.087  

Democratic-Co           

(*) P-value mean over the five test set. A p-value lower than 0.05 indicates a significant 

disagreement between the model predictions. 
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5 Summary and conclusions 

AnaCredit is a relatively recent ESCB dataset; it contains granular information (at contract and instrument 

level) on loans that banks grant to legal entities. Within the ESCB, two other ‘historical’, high quality datasets 

providing similar information on loans are the BSI and the FinRep, which are typically used in monetary policy 

and supervisory analyses respectively. Both of them can be exploited for a pairwise comparison with 

AnaCredit data to enhance the outlier detection process in the AnaCredit granular survey.  

More specifically, we explore the use of machine learning techniques to carry out the above cross-checking 

with specific reference to loan portfolios, in a framework that takes the time dimension into account and is 

bank-specific. We resort to three models – a robust regression one and two autoencoder models – that grasp 

the existing relationships between each benchmark dataset – BSI and FinRep – and AnaCredit in order to 

identify potential outliers in the latter one. 

Each model assigns an ‘anomaly score’ to each observation considered (uniquely identified by reporting date, 

entity, and loan aggregate). These anomaly scores are combined in order to yield a better forecast using a 

stacking approach under a semi-supervised learning context. Indeed, our approach lies in a semi-supervised 

environment having true anomalous or non-anomalous data labels only for a subset of the datasets. The true 

labels are based on both the domain knowledge of the analysts and the responses directly received from 

reporting entities on a number of observations, which are sampled by using a selection schema that is able to 

reproduce the distribution of scores assigned by the three models. 

In this semi-supervised context, we consider two settings. In the first one, where the true labels have been 

reported to the universe of observations under a Monte Carlo simulation, we train logistic, random forest, KNN 

and SVM models and compare the results obtained from each of them. In the BSI-AnaCredit comparison, the 

SVM model has the highest F1-score, whereas in the FinRep-AnaCredit comparison the random forest is the 

better learner in terms of the same statistic. In the second setting, where the expansion of true labels takes place 

within the learning of the models themselves, we train Self-training, SETRED, Tri-training, Co-bagging and 

Democratic-co models and compare their results to the baseline. We find that for the BSI-AnaCredit 

comparison, the self-training gives the better F1-score, while for FinRep-AnaCredit comparison, the Co-

Bagging model turns out to have the best performance. Considering all the models developed, we find that the 

algorithms of the second settings of semi-supervised models outperform those of the first settings. 

Possible refinements of the paper, which are left to future developments, might consist in developing the 

current base learners: for the robust regressions we could move to a panel approach and for the autoencoders 

to the variational autoencoders. Further improvements are related to the optimization of the parameters 

underlying the second setting semi-supervised models and the use of other disaggregated BSI and FinRep 

series.  

The framework developed in this paper is quite flexible and general and can be applied to carry out pairwise 

comparisons between datasets on similar phenomena but with different levels of granularity. As shown in our 
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empirical exercise, this approach exhibits important advantages not only in terms of a more accurate detection 

of potential outliers in a highly granular database, but also from the point of view of reporting banks that will 

have to cross-check such anomalies and decide whether to confirm or revise the data.  
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Appendix A - Tables and Charts 

Figure A1: BSI aggregates 
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Figure A2: AnaCredit and BSI series (examples) 
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Figure A3: AnaCredit and FinRep series (examples) 
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Figure A4: Distributions of the correlation between the compared aggregates 
BSI and AnaCredit series 

 
 

FinRep and AnaCredit series 
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Table A1: stratified sampling dimension 
 AnaCredit-BSI AnaCredit-FinRep 

Strata not sampled sampled not sampled sampled 
0-0-0 4192 11 22210 9 
0-0-1 2 2 35 2 
0-1-0   13 2 
0-1-1   4 2 
1-0-0 425 11 3529 8 
1-0-1 8 3 3 2 
1-1-1 0 1   

0-cases  2529  9761 
1-cases  587  1756 

Total 4627 3144 25794 11542 
x-y-z stratum is identified respectively by Robust Regression (x), CNN (y), DNN (z) by binary 
prediction (0 not anomaly, 1 anomaly). 0-cases previously classified not anomalies and 1-cases 
previously classified anomalies 

 
Figure A5: performance metrics 
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Figure A6: optimizing meta-parameters  
BSI-AnaCredit – logit1 model 

 

FinRep-AnaCredit – logit1 model 

 
BSI-AnaCredit – knn model 
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BSI-AnaCredit – random forest model 

 

FinRep-AnaCredit – random forest model 

 
BSI-AnaCredit – SVM model 

 
 

FinRep-AnaCredit – SVM model 

 
 

       The parameters have been optimized with respect to the mean value of the simulated response variables. 
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Appendix B - Robust regression equation 

Let 𝑃𝑃𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑠𝑠 be the amount of loan s of the subportfolio j granted from bank i at reference date t. Then the 

aggregated amount for bank i and the j-th subportfolio at date t is given by: 

(B.1)                                                                 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡 = ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑠𝑠
𝐽𝐽𝑖𝑖,𝑗𝑗,𝑡𝑡
𝑠𝑠=1  , 

where 𝐽𝐽𝑖𝑖,𝑗𝑗,𝑡𝑡 is the number of loans in the the j-th subportfolio. 

In the AnaCredit framework, there are different criteria triggering a reporting obligation of loans (i.e. that 

regulatory threshold of 25,000 euros, the counterparty classified as legal persons, etc.). Therefore, the sum is 

only restricted to such eligible loans: 

(B.2)                                            𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 = ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑠𝑠 ∙ 𝑆𝑆
𝐽𝐽𝑖𝑖𝑗𝑗𝑡𝑡
𝑠𝑠=1 (𝑠𝑠: 𝑠𝑠 𝜖𝜖 𝑒𝑒𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝑆𝑆𝑙𝑙𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠),  

where 𝑆𝑆(𝑥𝑥) is an indicator function which is equal to 1 in case of eligible loan. 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 is by definition less or 

equal to 𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡. Since we have errors in AnaCredit data (𝜉𝜉𝑖𝑖,𝑗𝑗,𝑡𝑡), we can express the amount observed: 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡  as 

the product of the ‘true’ value Ai,j,t
∗  and an error ξi,j,t: 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡

∗ ∗ 𝜉𝜉𝑖𝑖,𝑗𝑗,𝑡𝑡. Therefore, the difference between 

the logarithm two aggregates of the two compared datasets can be expressed as follows: 

(B.3)                                 log (𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡)− log (𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡) = log (𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡
∗ ) + log (𝜉𝜉𝑖𝑖,𝑗𝑗,𝑡𝑡)− log (𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡) 

For an unbiased estimator 𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 of the ‘true’ difference, in the form 𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 = log (𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡
∗ )− log (𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡)− 𝑢𝑢𝑖𝑖,𝑗𝑗,𝑡𝑡, so 

the equation (B.3) can be written,  

 (B.4)                                           log (𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡) = log (𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡) + 𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 + log (𝜉𝜉𝑖𝑖,𝑗𝑗,𝑡𝑡) + 𝑢𝑢𝑖𝑖,𝑗𝑗,𝑡𝑡     

The previous equation represents the theoretical model, in which the reporting error adds to a white noise 𝑢𝑢𝑖𝑖,𝑗𝑗,𝑡𝑡. 

An easy empirical specification to capture the relation between the two variables is by means of an 

Autoregressive Distributed Lag model (Granger, 1981) of order (1,1):  

(B.5)                      𝑙𝑙𝑙𝑙𝑙𝑙 (𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡) = 𝛼𝛼0 + 𝛼𝛼1𝑙𝑙𝑙𝑙𝑙𝑙 (𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡−1) + 𝛼𝛼2𝑙𝑙𝑙𝑙𝑙𝑙 (𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡) + 𝛼𝛼3𝑙𝑙𝑙𝑙𝑙𝑙 (𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡−1) + 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑡𝑡                                

As we are interested to capture the differences in the aggregated amounts as independent variable, in order to 

specify T as function of past differences, we impose the restriction 𝛼𝛼3 = −𝛼𝛼1. This restriction allows to obtain 

the following restricted model: 

(B.6)                            log (𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡) = 𝛼𝛼0 + 𝛼𝛼2log (𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡) + 𝛼𝛼3log (𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡−1/𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡−1) + 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑡𝑡                                  

When 𝐸𝐸�𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡� = 𝛼𝛼3𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹𝑖𝑖,𝑗𝑗,𝑡𝑡−1/𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡−1) and 𝛼𝛼0 = 0, 𝛼𝛼2 = 1, this last equation is equivalent to our 

theoretical model in B.4, where 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙 (𝜉𝜉𝑖𝑖,𝑗𝑗,𝑡𝑡) + 𝑢𝑢𝑖𝑖,𝑗𝑗,𝑡𝑡. Since T is non-positive and the difference referred 

to t-1 is non-negative, then the coefficient 𝛼𝛼3 must be non-positive. It’s worth to noting that the error reporting 

term (𝜉𝜉𝑖𝑖,𝑗𝑗,𝑡𝑡) is only included in the error component term of equation B.6. 

In our work, we have applied a log transformation21 of the original data values.  

 

21 We adopt the log1p function of x, that is the natural logarithm of x+1. 
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