

www.epc-cep.eu 1 / 73

Guidelines on cryptographic algorithms
usage and key management

EPC342-08 / Version 11.0 / Produced by PSSG / Date issued: 8 March 2022

This document defines guidelines on cryptographic algorithms usage and key management.

© 2022 Copyright European Payments Council (EPC) AISBL:
This document is public and may be copied or otherwise distributed provided attribution is made and the text

is not used directly as a source of profit

Guidelines
Cryptographic algorithms usage
and key management

www.epc-cep.eu 2 / 73

EPC342-08
2021 version 11.0
Date issued: 8 March 2022

Table of Contents
Executive Summary .. 6

1 Introduction ... 7

1.1 Scope of the document .. 7

1.2 Document structure and terminology ... 7

1.3 Recommendations ... 8

1.4 Implementation best practices .. 11

2 Algorithm Taxonomy ... 13

2.1 Technical Characteristics .. 13

2.1.1 Primitives.. 13

2.1.2 Elementary Constructions .. 15

2.2 Typical Usage.. 16

2.2.1 Confidentiality Protection .. 17

2.2.2 Integrity Protection .. 18

2.3 Standardisation .. 18

3 Algorithm Related Design Issues .. 20

3.1 Primitives.. 20

3.1.1 Unkeyed ... 20

3.1.2 Symmetric Key ... 21

3.1.3 Asymmetric key .. 22

3.1.4 Security levels .. 27

3.1.5 Quantum computing considerations ... 29

3.1.6 ISO Recommendation for Financial Services ... 32

3.2 Constructions ... 33

3.2.1 Symmetric Encryption .. 33

3.2.2 Asymmetric Encryption .. 34

www.epc-cep.eu 3 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

3.2.3 Hybrid Encryption .. 35

3.2.4 MACs .. 35

3.2.5 Digital Signatures ... 36

3.2.6 Authenticated Encryption .. 38

3.2.7 Distributed ledger technologies ... 38

3.3 Domain of Application ... 41

3.4 Implementation and interoperability issues .. 42

3.4.1 Security protocols .. 42

3.4.2 Data formatting issues ... 43

3.4.3 Implementation rules... 44

3.4.4 Key management impact on interoperability .. 44

3.4.5 Implementation quality and side-channel attacks .. 45

3.4.6 Algorithm OIDs ... 45

4 Key Management Issues ... 46

4.1 Symmetric algorithms .. 46

4.1.1 Key generation and derivation ... 46

4.1.2 Key backup and storage ... 47

4.1.3 Key distribution .. 48

4.1.4 Key installation ... 48

4.1.5 Key usage and key separation .. 49

4.1.6 Key deletion ... 50

4.1.7 Key cryptoperiod .. 50

4.2 Asymmetric algorithms .. 50

4.2.1 Key generation ... 51

4.2.2 Example of a hybrid key architecture .. 51

4.2.3 Key backup and storage ... 52

4.2.4 Key distribution .. 53

4.2.5 Key agreement and forward secrecy ... 54

4.2.6 Public Key installation .. 54

4.2.7 Certificate revocation and expiry ... 54

4.2.8 Key usage and key separation .. 55

4.2.9 Key deletion and archiving ... 55

4.2.10 Key crypto period .. 56

4.3 Key recovery and key escrow ... 56

www.epc-cep.eu 4 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

4.4 Additional information ... 56

5 Random Numbers .. 57

6 ANNEX I: Terminology .. 59

7 ANNEX II: Bibliography ... 63

List of figures

Figure 1: A technical taxonomy of cryptographic primitives and mechanisms 13

Figure 2: Example of key hierarchy for symmetric keys 46

Figure 3: A hybrid key hierarchy with asymmetric and symmetric keys (for data
confidentiality) ... 52

List of tables

Table 1: Recommendations ... 11

Table 2: Implementation best practices .. 12

Table 3: Matching of techniques and security functionalities 17

Table 4: Comparison of signature schemes .. 26

Table 5: Comparable security strengths (adapted from section 5.6 of [129]) 28

Table 6: Abbreviations ... 62

www.epc-cep.eu 5 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Document History
This document was first produced by ECBS as TR 406, with its latest ECBS version published in
September 2005. The document has been handed over to the EPC which is responsible for its
yearly maintenance.

DISCLAIMER:

Whilst the European Payments Council (EPC) has used its best endeavours to make sure that all
the information, data, documentation (including references) and other material in the present
document are accurate and complete, it does not accept liability for any errors or omissions.

EPC will not be liable for any claims or losses of any nature arising directly or indirectly from use of
the information, data, documentation or other material in the present document.

www.epc-cep.eu 6 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Executive Summary
The purpose of this document is to provide guidance to the European payments industry, in the
field of cryptographic algorithms and related key management issues.

It has been written mainly for payment service providers: security officers, risk managers, systems
engineers and systems designers. Although its reading does not assume expertise in cryptology, it
contains some sections which require a basic mathematical background.

There is constant progress in the science of cryptology, either to create new algorithms or to break
existing ones, such that any recommendation on cryptographic algorithms and key management is
liable to become obsolete before it is published. Also, it is usually an over-simplification to
categorise an algorithm or key management technique as being either 'good' or 'bad'. In practice,
some are weaker or stronger, and some are subject to one or another type of attack, depending
on how and for what they are used.

Consequently, the choice of a cryptographic technique to protect data should always be the result
of a risk assessment process. This process should consider not only the potential loss in case the
cryptographic technique fails to prevent an attack, but also the operational conditions that may
allow some kinds of attacks and prevent others. For example, algorithms, which are subject to
known plaintext/ciphertext attacks when used in a certain way, may be strong enough if used in
another way that does not allow the attacker to access an adequate sample of plaintexts and
matching ciphertexts.

As most algorithms are subject to attacks that would succeed given sufficient time, this risk
assessment should consider the period during which data must be protected. Using a
cryptographic algorithm, which is considered as weak by the specialists may be a bad policy
decision as it may alter the reputation of a financial institution, although it may have no
operational consequences for many systems.

A system using cryptography should always be designed with a possible algorithm migration in
mind. Nevertheless, the cost and difficulty of migrating from one algorithm to another (or of
changing the size of the keys) should not be underestimated.

This document specifies a number of recommendations and best practices on cryptographic
algorithms, security protocols, confidentiality and integrity protection and key management in
section 1, for which further detailed background information may be found in the subsequent
sections of the document.

Finally, when implementing and integrating cryptography into protocols or schemes, although
algorithms, key sizes and randomness of key material are essential, other security implementation
aspects beyond the scope of this document become equally important such as side-channel
countermeasures and protocol layer interdependency checking.

With the publication of this new version of the document, updates related to symmetric
encryption were made, such as a clarification of the general recommendation and an overview on
format preserving encryption was added. Also, the sections on quantum computing considerations
and key distribution have been reviewed and updated as needed.

In producing these guidelines, the EPC aims to provide a reference basis to support payment
service providers. However, it needs to be recognised that research and developments in
cryptology are constantly evolving. Therefore, the EPC plans to annually review and update the
document to reflect the state of the art in light of major new developments and to keep it aligned
with the documents referenced.

www.epc-cep.eu 7 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

1 Introduction

1.1 Scope of the document

This document is aimed to provide guidance to the European payments community on algorithm
usage and key management issues.

It contains some recommendations from EPC on algorithm usage and key management issues that
the payment service providers may consider together with their own security policy and the
relevant professional or national rules and regulations they have to comply with.

These guidelines recommend use of International Standards where appropriate.

It also addresses the points that should be considered whenever payment service providers wish
to provide interoperable services based on cryptographic mechanisms. These points may be of
particular interest for secured cross-border services.

The scope of this document is limited to cryptographic algorithms and key management. Amongst
the mechanisms excluded from its scope are:

• error detecting mechanisms such as Cyclic Redundancy Check,

• data compression facilities such as Zip or Huffman coding,

• side-channel countermeasures and protocol layer interdependency checking,

• secret algorithms, for which no technical features are available.
The world of cryptography being wide and rapidly expanding, this document focuses on algorithms
which are suitable for payment services, and which are already adopted by the financial industry
or which are likely to be in the foreseeable future.

In order to cope with the rapid evolution of the technology, this report is updated yearly.

1.2 Document structure and terminology

Section 1 specifies the scope of this document, contains the list of “Recommendations” and
“Implementation best practices” and describes the structure of the document. Those
recommendations and best practices are further elaborated in the remainder of the document.

Section 2 provides an introduction to cryptographic primitives and a taxonomy for cryptographic
algorithms and their typical usage.

Section 3 discusses design issues for constructing cryptographic mechanisms from cryptographic
primitives and describes implementation and interoperability issues.

Section 4 deals with key management for symmetric and asymmetric algorithms and introduces
the topic of key escrow and key recovery.

Section 5 treats briefly the generation of random numbers.

ANNEX I contains definitions of terms used in this document and lists most of the acronyms used.

ANNEX II contains a bibliographical list of the textbooks, publications or standards (either
international, national or de facto) referenced.

www.epc-cep.eu 8 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

1.3 Recommendations

This section summarises the recommendations made throughout the document, in the order they
appear in the document. Further background information to these recommendations may be
found in the main sections of the document:

Crypto algorithms

Rec 1 Only algorithms whose specifications have been publicly scrutinised
(ideally with a public design phase), and whose strength has been
assessed by crypto experts can be recommended. Algorithms specified in
International Standards should be preferred. This recommendation also
applies to algorithms for key generation.

Rec 2

Symmetric
algorithms

• AES is the recommended standard for new systems.
• 3TDES is still secure in use cases where there is no concern

regarding reduced block sizes.
• 2TDES may still be sufficiently secure for existing systems under

specific conditions (see 3.1.4); plans should be made to migrate
to AES.

• Single DES (56 bits) should be considered broken.
Further details are provided in sections 3.1.2.4 and 3.1.4.

Rec 3

Public Key
algorithms

Except for systems where computational or data storage capacities are
restricted, or where a strategic long-term migration is needed, there is
no strong reason to move from RSA to ECC- based signature schemes.

Further details are provided in section 3.1.3.3.

Rec 4

Public Key
algorithms

• No longer use RSA keys of 768 bits and ECC keys of 130 bits, or
less.

• Avoid using 1024-bit RSA keys and 160-bit ECC keys for new
applications unless for short term low value protection (e.g.
ephemeral authentication for single devices).

• Use at least 2048-bit RSA or 224-bit ECC for medium term (e.g.
10 year) protection (see [175]).

• For considerations regarding low exponent RSA, section 3.1.3
should be consulted.

Further details are provided in section 3.1.4.

Rec 5 In view of the current, published progress of quantum computing
initiatives, if long term confidentiality (that is, for several decades) is
required the use of a 16-byte block cipher such as AES 256 is
recommended. AES-128 will remain fit-for-purpose for shorter
confidentiality requirements.

Where asymmetric primitives are used, crypto agility should be
integrated into the cryptographic services’ pipeline. Such integration will
enable a swift migration to the use of standardised post-quantum
asymmetric cryptographic primitives if the need arises.

www.epc-cep.eu 9 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Further details are provided in section 3.1.5.

Rec 6

Message
Authentication
Code (MAC)

Although many legacy systems currently still use MACs based on DES or
TDES, new systems should use CMAC based on AES, or HMAC.

Further details are provided in section 3.2.4.

Rec 7

Distributed ledgers

Financial service providers that decide to deploy distributed ledger-
based services or processes should:

• Confirm the security properties afforded by the distributed
ledger to its users.

• Identify the cryptographic primitives used to validate and
commit changes to the ledger and confirm the status of
cryptanalysis targeting these primitives.

• Identify the consensus protocol used to commit changes to the
ledger and assess the feasibility of a successful consensus hijack
attack.

Further details are provided in section 3.2.7.

Security protocols

Rec 8 In designing a security protocol, the following should be identified:

• the security service provided.
• the entities involved.
• the security verification values (MACs, hashes, digital signatures,

...) that will need to be generated and verified.
• the algorithms and their modes of operation.
• the key material to be generated.
• the random number generators to be used (e.g. key generation,

challenges, padding).
• the key establishment material (this could be key names,

encrypted session keys, public key certificates or certificate
references, initialisation vectors if any, ...).

• unambiguous definition of the data used as input in the
cryptographic mechanisms.

• the formatting techniques used in the signature
generation/verification process.

• the transformation techniques used to represent binary data
(known as filtering), if any.

Further details are provided in section 3.4.

Rec 9 • Use TLS with secure cryptographic primitives and appropriate
key sizes (c.f. 3.1.3.4).

• Enable TLS 1.3 support in all new systems (offers forward-
secrecy by default).

www.epc-cep.eu 10 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

• Enforce the use of TLS 1.2 or higher for all use cases (preferably
with ephemeral cipher suites).

• Do not use TLS versions older than TLS 1.2 because of known and
exploitable vulnerabilities (unless such use is approved in specific
use cases through ongoing security risk assessment).

Confidentiality and integrity protection

Rec 10 To achieve confidentiality and integrity protection:

• For the originator, sign the plaintext data first for legal signature
(if required), then compress (if required), then apply
authenticated encryption with the non-confidential data being
treated as associated data (not encrypted).

• For the recipient, perform the steps in the reverse order. Verify
that signatures are from an authentic source.

• The encryption and signature/MAC can be performed as separate
steps, or can be achieved by use of authenticated encryption
(which also allows the use of traditional encrypt-then-MAC) or
signcryption.

Further details are provided in section 3.4.

Key management

Rec 11 If a master key needs to be backed-up outside of a TRSM then it should
be split into key components in a secure and resilient manner. Secret
sharing techniques should be used to allow recovery of the master key
from all or a fixed number (threshold) of the master key components.
The security level of the storage of the master key components should
be commensurate with the protection afforded the operational master
key itself.

Further details are provided in section 4.1.2.

Rec 12 Symmetric keys should be dedicated to one usage (e.g. encryption or
MAC computation, but not both).

Further details are provided in section 4.1.5.

Rec 13 Key usage controls (e.g., making use of control vectors, key wrapping)
which bind the key-to-key control information in a secure way should be
employed.

Further details are provided in section 4.1.5.

Rec 14 Keys should be generated inside a TRSM and private keys should never
exist in clear text outside a TRSM.

Further details are provided in section 4.2.1.

Rec 15 Where appropriate, public keys are to be distributed such that their
integrity and the binding with the owner are preserved (e.g., by using
certificates).

Further details are provided in section 4.2.4.

www.epc-cep.eu 11 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Rec 16 Usage of X 509, version 3, format certificates is recommended.

Further details are provided in section 4.2.4.

Rec 17 When verifying a digital signature, users should check that the certificate
status (either valid, expired or revoked) when the signature was
generated does not make it invalid. When a certification path is involved,
this verification should be performed for every certificate of the path up
to the root certificate. Efficient verification may require that the date
and time when the signature was produced is unambiguously defined.

Further details are provided in section 4.2.7.

Rec 18 Whenever possible, trusted time sources should be used, in order to
allow reliable verification of certificate validity.

Further details are provided in section 4.2.7.

Rec 19 An asymmetric key pair should be dedicated to one usage, for instance:
one of entity authentication, non-repudiation of data, symmetric keys
encryption.

Further details are provided in section 4.2.8.

Rec 20 Where possible, payment service providers should avoid the use of key
escrow, but key recovery is part of their due diligence and business
continuity obligations.

Further details are provided in section 4.3.

Table 1: Recommendations

1.4 Implementation best practices

In addition to the recommendations listed in the previous section, the following best practices
with respect to implementations of cryptographic techniques need to be emphasised.

Data confidentiality

BP 1 For assuring confidentiality of data, symmetric block cipher algorithms are still
the best choice. They are subject to attacks, made easier if the secret key is
short. Any legacy system using 56-bit keys (i.e. single DES) should now have
been replaced. 2TDES is still appropriate for legacy applications under certain
circumstances (e.g. limited key use or data protection time). AES using 128-bit
keys is today's recommended standard for new applications. Additionally, the
use of three-key Triple DES is acceptable. In all cases, the secret key crypto
period should be as short as possible and therefore usage of non-reusable
session keys should always be preferred. See also Recommendations 2, 4 and
section 3.1.4.

Data integrity

BP 2 For assuring data integrity migration towards SHA-224, SHA-256, SHA-384 and
SHA-512, (collectively known as the SHA-2 family), Whirlpool or SHA-3 is
strongly encouraged (see section 3.1.1.1). Alternatively, a symmetric algorithm
MAC computed with a secret key may be used. And this may also provide data
origin authentication. When a symmetric algorithm MAC is used, similar

www.epc-cep.eu 12 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

considerations on the length of the key as for confidentiality apply and the use
of AES is preferred (see section 3.2.4).

Data integrity and origin authentication

BP 3 For assuring data integrity and data origin authentication (which are the bases
to provide non-repudiation of origin), an asymmetric algorithm and a hash
function based digital signature is recommended. Hash functions such as SHA-
2, Whirlpool or SHA-3 are preferred (see section 3.1.1.1). Older hash functions
such as MD5 and SHA-1 are not recommended (especially if non-repudiation
with hash function collision resistance is needed). When protection is needed
for medium term then applications will need to support RSA digital signatures
with at least 2048-bit moduli (see section 3.1.4). Elliptic Curve DSA algorithms
are now being adopted on the grounds of smaller key sizes and signing
efficiency (patents may apply on newer techniques).

Key management

BP 4 Key management for asymmetric algorithms requires distribution of
authenticated public keys and secured storage of private keys. The best
solution to the first requirement is to use certificates, however this leads to the
problems of certificate management and of establishment of Certification
Authorities. For secured storage of private keys, different techniques are
possible, the use of smart cards with RSA capability being one already widely
adopted (see section 4.2).

BP 5 Keys (either symmetric or asymmetric key pairs) should be dedicated to one
purpose only. For instance, separate symmetric keys should be used for MAC
computation and for confidentiality, and an asymmetric key pair should be
dedicated to digital signature or for key encryption. Amongst the benefits of
such a policy are: design flexibility, facilitation of exploiting audit trails,
simplification of archiving, prevention of many attacks (see section 4).

Table 2: Implementation best practices

www.epc-cep.eu 13 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

2 Algorithm Taxonomy

The choice of an algorithm may be done according to functional, technical, legal, or commercial
concerns. Thus, it may be useful to propose an algorithm taxonomy based upon different criteria.
In this section we propose to sort algorithms according to their:

• Technical characteristics
• Typical usage
• Legal or commercial status

2.1 Technical Characteristics

• Unkeyed (hash functions)
• Symmetric (stream and block ciphers)
• Asymmetric (also known as public key algorithms).

Figure 1 proposes a taxonomy of cryptographic primitives and mechanisms based on their
technical characteristics. Commonly used algorithms sorted according to this taxonomy are given
as examples.

It should be noted that agreement of which algorithms to use is a necessary, but not sufficient
condition for interoperability. A scheme implementing a cryptographic service must also ensure
consistent understanding of encoding, padding, compression and filtering of data. These methods
are not a main part of this document but discussed briefly where appropriate.

2.1.1 Primitives

Figure 1: A technical taxonomy of cryptographic primitives and mechanisms

Note that algorithms shown in this Figure are examples not recommendations.

www.epc-cep.eu 14 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

2.1.1.1 Un-keyed (Hash Functions)
The most important un-keyed cryptographic primitives are hash functions. Cryptographic hash
functions take as input a message of arbitrary length and produce a fixed length message digest,
providing three properties listed below:

1 Collision resistance meaning it is infeasibly hard to find two messages that map to the same
message digest under the hash function.

2 Second pre-image resistance meaning it is infeasibly hard to find a second message that has
the same message digest as a given first message.

3 One-wayness (also known as pre-image resistance) meaning it is infeasibly hard to find a
message that maps to a given message digest.

The three properties are related, with collision resistance implying second pre-image resistance,
which in turn implies one-wayness. If the collision resistance of a function is broken, the second
pre-image resistance and one-wayness properties may still hold.

Most hash functions are specifically designed for this purpose, such as the SHA family including
SHA-224 [98].There are also hash functions based on a modified block cipher, like Whirlpool [38]
or on generic block ciphers [37], or functions based on modular arithmetic [39]. A hash function
can also be derived from block ciphers where the key required by the algorithm is no longer secret
and may be derived from the message to be processed: see ISO/IEC 10118-2 [35].

A hash function is normally employed as a component of a data integrity mechanism1. It is
generally a central component of a digital signature scheme.

Examples: SHA-2, Whirlpool

2.1.1.2 Symmetric key
The most relevant symmetric key primitives are block ciphers and stream ciphers. Block ciphers
provide a key-specific reversible mapping of a given message block to a cipher block. Stream
ciphers produce a pseudo-random stream from a given key, which can be used to encipher a
message.

Block ciphers are more versatile than stream ciphers, in that they facilitate constructions both for
encryption and for message authentication codes (MACs). On the other hand, although usually still
quite efficient and designed for hardware implementation, block ciphers are generally less
efficient than pure stream ciphers. Numerous high quality international standards for block
ciphers are available.

Stream ciphers are generally very efficient and suitable for hardware implementation and are thus
often used for confidentiality protection in high-speed telecommunication applications. Often
they are proprietary algorithms and their specifications are confidential.

Examples: Block Ciphers (AES, TDES)

2.1.1.3 Asymmetric Key
Asymmetric or public key primitives have two different keys, a public and a private key, where
data may be transformed under the public key, but the transformation can only be inverted using
the private key. This enables non-repudiation functions, certain one-to-many and many-to-one
schemes and exchange of secret keys without a pre-existing secret channel. Public key primitives

1 E.g., integrity protection of the hash of a message can provide integrity protection of the message itself.

www.epc-cep.eu 15 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

are usually much less efficient than symmetric key primitives. For that reason, they are generally
only applied to small amounts of data, and where the asymmetric property is advantageous.
Typical applications include key exchange, key encapsulation, signatures and hybrid encryption
(see for example 2.1.2.2, and 2.1.2.4).

Examples: RSA, Diffie-Hellman

2.1.2 Elementary Constructions

In this section we review the most common constructions in which the primitives discussed above
are used in actual applications.

2.1.2.1 Symmetric Encryption
Symmetric encryption is used to ensure confidentiality. Communication partners must hold the
same (symmetric) key to encrypt or decrypt a message. Symmetric encryption can be constructed
from block ciphers or from stream ciphers. Block ciphers are more flexible than stream ciphers and
generally quite efficient, but not as efficient as stream ciphers.

Stream ciphers generate a reproducible, pseudo-random key stream from the key, that is
generally used to encipher a message using bitwise modular addition. Note that stream cipher
encryption is always malleable, allowing the manipulation of the transmitted data, even if
confidentiality is assured.

Block ciphers can be used in one of several modes of operations to encrypt a message.

Details of the modes can be found in section 3.2.1.1.

2.1.2.2 Asymmetric Encryption
Asymmetric (or public key) encryption is used to ensure confidentiality. In the case of message
transmission a sender uses the recipient's public key to encrypt the message, while the recipient
uses the corresponding private key for decryption. The recipient's public key may have been
obtained from a trusted key directory, for example. This allows for effective key management,
when many senders are to encrypt data for a single recipient (e.g. e-mail encryption).

A popular way of establishing trust in keys is the use of public key certificates. Public key
certificates may be published in an online key directory but with a trusted authority's signature
(see 2.1.2.4 below) certifying the owner of the key. Prospective senders then only need to hold
the authority's key in order to be able to establish secure communications with the intended
recipient.

Asymmetric key encryption is generally not very efficient, and therefore mostly used for small data
items such as symmetric keys i.e., for hybrid encryption as described below.

Examples: RSA-OAEP (PKCS#1 [113], ANSI X9.31 [72], ISO/IEC 18033-2 [57]), EL-GAMAL, ECIES (IEEE
P1363 [142] ISO/IEC 18033-2 [57]), Paillier ([181]).

Typically, a public key is used for encrypting an ephemeral symmetric key which is then used for
encrypting the message. The recipient uses its private key to decrypt the ephemeral key and then
uses this to decrypt the message.

See section 3.2.3 for more information.

Examples: S/MIME, SSL, TLS

www.epc-cep.eu 16 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

2.1.2.3 MAC
Message authentication codes (MACs) are used to guarantee message authenticity and integrity.
Communication partners must hold the same (symmetric) key. Then upon transmitting a message
over a public channel the sender using the key computes a MAC, which is attached to the
message, and can be verified by the recipient using his key, ensuring authenticity and integrity of
the received message.

MACs are generally constructed from hash functions or block ciphers using cipher-block chaining.

Examples: HMAC (ISO/IEC 9797-2, mechanism 2 [28]), CMAC (ISO/IEC 9797-1, mechanism 5 [27])
and CBC-MAC (ISO/IEC 9797-1, mechanism 1 [27])

2.1.2.4 Signatures
Signatures employ the properties of asymmetric primitives to allow for non-repudiable
authentication. To sign a message, it is usually hashed with a cryptographic hash function to
obtain a short message digest. The digest is then transformed with the signer's private key to
obtain a signature.

Any holder of the signer's public key can check if a signature authenticates a message under the
corresponding private key, but public key holders are unable to generate signatures themselves.
As such the signature uniquely authenticates the message as originating from the signer, enabling
non-repudiation services.

As with asymmetric encryption, public keys can be published in a public directory.

Examples: RSA-PSS (PKCS#1 [113], ISO/IEC 9796-2 [25]), DSA (FIPS PUB 186-4 [84], ISO/IEC 14888-3
[48]), ECDSA and similar schemes (ISO/IEC 14888-3) [48]

2.2 Typical Usage

Elementary constructions may be classified according to the security services or functions they are
suited for:

• Confidentiality protection
Data confidentiality,
Key encapsulation,
Key establishment.

• Integrity protection
Data origin authentication,
Entity authentication,
Non-repudiation.

www.epc-cep.eu 17 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

The following table shows which kind of elementary construction is considered suitable for a given
usage:

Construction
Usage

Symmetric
Encryption

Asymmetric
Encryption MAC Signature

Data
confidentiality

Yes
(one to one) No (1) No No

Key
encapsulation

Yes
(one to one)

Yes
(many to one) No No

Key
establishment No Yes No No

Data origin
authentication No No Yes

(one to one)
Yes
(one to many)

Entity
authentication No No Yes

(one to one)
Yes
(one to many)

Non-
repudiation No No No Yes

Table 3: Matching of techniques and security functionalities

Notes:

(1) Usage is possible, but the computational complexity is generally excessive for the given
purpose.

(2) Hybrid encryption as defined in section 4.1.2.3 is for data confidentiality and key
encapsulation.

2.2.1 Confidentiality Protection

Confidentiality means that information is not made available or disclosed to unauthorised
individuals, entities or processes. This is usually ascertained by means of encryption. An
encryption scheme achieves confidentiality if an attacker cannot distinguish between any two
given data items of his choosing once the data has been encrypted.

2.2.1.1 Data Confidentiality
Data or message confidentiality pertains to stored information or to data being exchanged in a
communication. A symmetric cipher may be used to protect the confidentiality of data in either
scenario. Stream ciphers typically execute at a higher speed than block ciphers and have lower
hardware complexity, but block ciphers are more flexible. An asymmetric algorithm can also be
used to encrypt data but is for performance reasons only recommendable for small volumes of
data. If many to one confidentiality is required, for instance for e-mail encryption, hybrid
encryption is the method of choice.

2.2.1.2 Key Encapsulation
Key encapsulation mechanisms (KEMs) are a class of encryption techniques designed to secure
symmetric cryptographic key material for transmission. Key encapsulation is sometimes based on
symmetric key schemes, but more generally uses asymmetric (public-key) algorithms. Public keys,
which are only suitable for encryption of small data volumes, are used to encipher a symmetric
key to be shared between two parties.

http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Symmetric_cryptography
http://en.wikipedia.org/wiki/Cryptographic_key
http://en.wikipedia.org/wiki/Asymmetric_cryptography

www.epc-cep.eu 18 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

2.2.1.3 Key Establishment
Key establishment is the process of exchanging a cryptographic key between two parties, using
cryptographic techniques. Asymmetric (public key) encryption techniques lend themselves to key
establishment, because they allow the secure construction of shared secret keys from freely
accessible public key certificates.

2.2.2 Integrity Protection

Integrity protection refers to messages arriving as they have been sent, or data being retrieved as
it has been stored. Generally, one speaks about authentication when the assurance about
message origin is only towards the communication partner. If there is an added requirement that
this assurance be transferable to third parties as well, one speaks of non-repudiation of origin.

2.2.2.1 Data origin / Message / Entity Authentication
Authentication means assurance that a message or data item has been delivered as sent by a
specified communication partner. Entity authentication is the corroboration that an entity is the
one claimed. Authentication can be achieved by means of MACs or digital signatures. MACs offer
better performance, but signatures allow for authentication towards multiple recipients (one-to-
many), as the public verification key can be freely distributed.

2.2.2.2 Non-Repudiation
Non-repudiation means transferable (e.g. to a judge) assurance about the originator of a data
item. Digital signatures are used to provide non-repudiation. Only the originator of the data holds
the private key and can generate signatures. The public key can be freely distributed to receivers
and third parties, allowing verification of data origin. Once a public key has been accepted as
belonging to an originator, the originator cannot later repudiate signed data items, as he is the
only party capable of generating such signatures. Symmetric techniques cannot provide non-
repudiation, because sender and receivers hold the same key, making any receiver another
potential originator of the message.

2.3 Standardisation

Cryptographic algorithms may be standardised by international standards bodies such as ISO
(primarily by ISO/IEC JTC1/SC27) or by national bodies such as ANSI or NIST. Cryptographic
algorithms might also be standardised by industry/technology-specific standardisation bodies such
as the IEEE and the IETF or companies/consortia such as PKCS for RSA standards and SECG for
elliptic curve standards. An algorithm that occurs or is referenced in a standard is usually
published and open for scrutiny by independent researchers. Being able to withstand research and
theoretical attacks for many years builds trust in such an algorithm.

Standards organisations, industry consortia or government agencies may also publish
recommendations concerning key lengths or implementation guidelines for cryptographic
algorithms.

Algorithms for military use are typically kept secret. Government algorithms may be released with
the expectation that they will be used for government and civil business. An example of this is the
algorithms and protocols made freely available by NIST. These are sometimes the results of public
competitions (e.g. AES and SHA-3) and will frequently then be adopted as ISO standards.

Proprietary algorithms are usually designed for a specific industry but are often less well reviewed
by the open cryptographic community, especially if they are kept confidential and so are not
recommended for financial applications.

www.epc-cep.eu 19 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

EPC recommendation 1

Only algorithms whose specifications have been publicly scrutinised (ideally with a public
design phase), and whose strength has been assessed by crypto experts can be
recommended. Algorithms specified in International Standards should be preferred. This
recommendation also applies to algorithms for key generation.

www.epc-cep.eu 20 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

3 Algorithm Related Design Issues

Cryptographic functions such as unkeyed hash functions, symmetric algorithms and asymmetric
algorithms can be combined in many ways to achieve a variety of objectives. Often the
cryptographic 'primitives' come as a standard toolbox, which can be used flexibly by many
applications. Care must be taken when developing the compound functions from the primitive
functions so as to ensure interoperability, security and efficiency.

This section describes the main primitives and ways in which they are combined.

3.1 Primitives

3.1.1 Unkeyed

3.1.1.1 Hashes
Primitive hash functions are unkeyed and designed to create a short 'digest' of a long string of
input data. These functions are designed to be one-way (i.e. difficult to find a pre-image of a given
hash) and collision resistant (i.e. difficult to find two inputs that hash to the same digest). Most
signature functions depend on the use of hash functions as do some asymmetric encryption
functions (see section 0).

SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 are algorithms defined by NIST (FIPS 180-4 [83])
and that produce 160, 224, 256, 384 and 512-bit hash results, respectively. The longer result
algorithms tend to be known collectively as the SHA-2 family. Together with Whirlpool (which
produces a 512-bit hash result) and RIPEMD-160 [151] (which produces a 160-bit hash result
smaller than the recommended minimum of 256 bits) they are now also standardised in ISO/IEC
10118-3 [38]. SHA-224 is based on SHA-256. Computation of a SHA-224 hash value involves two
steps. First, the SHA-256 hash value is computed, except that a different initial value is used.
Second, the resulting 256-bit hash value is truncated to 224 bits. In August 2015, NIST published
FIPS 202 (and revised FIPS 180) thereby standardising SHA-3 that can produce 224, 256, 384 and
512-bit hash results (see [83], [87], [176]).

MD5 is an old algorithm producing only a 128-bit hash result (see section 5.1.3.4). MD5 has been
so extensively attacked that it shall no longer be used.

There are also collision search attacks on SHA-1, first in 2005 (see [157]) and more recently by
Marc Stevens, who has also developed a method [173] for discovering an attack attempt, given a
message. If it is necessary for some reason (e.g., backward compatibility) to still support SHA-1, it
is recommended to apply such a method. In 2015 a “freestart collision” for SHA-1 was realised
(see [179]) which computed the first practical break of the full SHA-1 algorithm reaching all 80 out
of 80 steps. In February 2017 researchers in Amsterdam (see [186]) announced a collision attack
against the full SHA-1 algorithm without the benefit of a “freestart”, allowing an attacker to create
two different files that have the same hash value.

The 2017 attack confirmed in practice what was already known in theory, that the algorithm is
fundamentally broken – its collision resistance is broken from 80 bits down to less than 64 bits and
there is speculation that its pre-image resistance may similarly be reduced from 160 bits down to
less than 128 bits.

In consequence, for message signing, MD5 should no longer be used and legacy message signing
systems that rely on the collision-resistance of SHA-1 should be migrated to a member of the SHA-
2 family or to SHA-3. In addition, [133] disallows SHA-1 for digital signature generation.

www.epc-cep.eu 21 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

More recent research by Gaetan Laurence and Thomas Peyrin (see https://sha-mbles.github.io/
and [196]) improves the previous SHA-1 collision attacks by using new techniques to turn collision
attacks into so-called 'chosen-prefix collision attacks' where for any given prefixes P and P' the
attacker might find two messages M and M' that begin with these prefixes and have the same
hash. The authors showed that such collisions can be computed with a complexity of 263.4 SHA-1
calculations whereas ad-hoc SHA-1 collisions require 261.2.

See Best Practices 2 and 3 in section 1.4.

3.1.1.2 Modification Detection Code
A block cipher may be used as a kind of hash function to compute a Modification Detection Code.
In this usage, the key required by the algorithm is no longer secret and may be replaced by data
that is being protected. This technique is described in ISO/IEC 10118-2 [37] where a 128-bit hash
result is produced. The DES algorithm may be used to compute such an MDC (known as DES in
MDC mode). Since 2005, 128-bit hash results are considered to be too short for general usage, so
ISO/IEC 10118-2 [37] should not be used with 64-bit block ciphers.

3.1.1.3 Length recommendations
In the long term, hash functions with less than 256 bits output length should not be used. It is
recommended to use SHA-2 or Whirlpool or SHA-3 (see Table 4). Where collision-resistance
matters, legacy systems using SHA-1 should replace SHA-1 according to the above
recommendations.

3.1.2 Symmetric Key

3.1.2.1 Triple DES (TDES)
The key length of TDES is 112 bits (for two-key TDES, 2TDES) or 168 bits (for three-key TDES,
3TDES). TDES consists of three invocations of the DES primitive. The key is split into two or three
single DES keys. First the data is encrypted with the first key, then it is decrypted with the second
key, and finally encrypted again with the first key (in case of 2TDES) or the third key (in case of
3TDES).

An ISO Technical Report (ISO TR 19038 [7]) on TDES modes of operation was published in 2005.
This technical report specifies modes of operation consistent with ISO/IEC 10116 [23] and provides
implementation guidelines specifically for TDES and the financial industry.

Further security considerations may be found in section 3.1.4.

3.1.2.2 Advanced Encryption Standard
The Advanced Encryption Standard (AES) has been developed by NIST as a replacement for DES
and has been approved, as Federal Information Processing Standard (FIPS 197 [85]), in 2001.

AES is a symmetric block cipher that supports block lengths of 128 bits and key lengths of 128, 192
and 256 bits. It has been designed to be considerably more efficient than TDES. It is now
standardised in ISO/IEC 18033-3 [59].

In [125] NIST has defined modes of operation for AES consistent with ISO/IEC 10116 [23].

Further information on AES may be found at: http://csrc.nist.gov/groups/ST/toolkit/.

3.1.2.3 Efficiency
In software implementations, the computation of an AES encryption takes about as much as one
or two DES encryptions. This implies that encryption of a file or a data stream by AES will be much
faster than TDES, since TDES takes six encryptions per 128 bits.

https://sha-mbles.github.io/
http://csrc.nist.gov/groups/ST/toolkit/

www.epc-cep.eu 22 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

In the special case of PIN block encryption, both DES and AES encryptions are just one block of
data, but AES encryption will still be faster.

However, for PIN block encryption, the block size is an issue. Where the standard PIN block length
(defined in ISO 9564 [2]) used to be 64 bits, which is smaller than the AES block length, the
standard has now been updated to include a new PIN block format of 128 bits. This new PIN block
format is called Format 4. New systems should be designed to support 8-byte and 16-byte PIN
blocks.

3.1.2.4 Algorithm and Key length recommendations
EPC recommendation 2

• AES is the recommended standard for new systems.
• 3TDES is still secure in use cases where there is no concern regarding reduced block

sizes.
• 2TDES may still be sufficiently secure for existing systems under specific conditions (see

3.1.4); plans should be made to migrate to AES.
• Single DES (56 bits) should be considered broken.

Note that 2TDES may have an effective key length of less than 112 bits if the volume of data
enciphered under a key is large. See section 3.1.4 for more details on security levels of TDES. In
general, due to potential internal collisions when processing large amounts of data (> 2b/2 blocks
where b is the block size) under the same key, block ciphers with a larger block size (e.g. AES with
128-bit block size) can provide better security than those with a smaller block size (e.g. TDES with
64-bit block size). For examples see [184] and [183].

3.1.3 Asymmetric key

The primary asymmetric key primitives considered in this document are primitives whose security
is based on the difficulty of integer factorisation, such as RSA and primitives whose security is
based on the difficulty of solving discrete logarithms in a finite group (and related problems), such
as DSA and Diffie-Hellman (DH). The latter category can be separated into those where the group
is in a finite field (such as DSA and DH) and those where the group elements are points on an
elliptic curve2 (such as the elliptic curve versions of DSA and DH).

3.1.3.1 RSA specific issues
An RSA key pair comprises

• A public key modulus N (that is the product of two large secret prime numbers p and q)
and a public exponent e.

• A private exponent d that is determined given knowledge of p and q.
The RSA public key operation (the basis for encryption and signature verification) applied to data X
is Xe mod N.

The RSA private key operation (the basis for decryption and signature generation) applied to data
Y is Yd mod N.

2 In this case the attacker cannot utilise the faster algorithms which exploit the field structure of the group and so
cryptographic keys can be shorter.

www.epc-cep.eu 23 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Reblocking problem

It may be necessary to sign a message (with the sender's private RSA key) and then encrypt the
resulting signature (with the receiver's public RSA key). One must be concerned about the relative
sizes of the moduli involved when implementing this procedure. If the sender's modulus is greater
than the receiver's there is a chance that the receiver cannot recover the signature.

There are different ways of solving this issue some of which are discussed in [141], for instance.

When requiring authenticity and confidentiality there are pros and cons as to whether messages
should first be signed and then encrypted or vice versa. See section 3.4.3 for a discussion on this.

Random padding and redundancy

The basic transformations that implement RSA decryption and signature generation
(complemented by encryption and verification, respectively) are essentially the same but have
diametrically different requirements, the first for confidentiality and the second for authenticity
and integrity. This leads to different processing requirements in order to defend against one of the
most basic types of attack, namely guessing (followed by application of the public RSA function to
corroborate the guess).

With confidentiality,3 the designer must ensure that the chances of an attacker guessing the
plaintext are sufficiently small. So for instance with PIN encryption, padding with an unpredictable
value must be introduced. This is to prevent an attacker who has an encrypted PIN-message from
being able to exhaustively encrypt every possible PIN-message until the correct one is found.

With authenticity, the designer must similarly ensure that the chances of an attacker guessing a
useful signature are sufficiently small. This effectively requires that a specified function
introducing redundancy be applied to messages before applying the RSA private function (thereby
reducing the probability that the application of the RSA public function to a signature-guess will
result in a valid message). Such a function may be implemented by specifying fixed message
headers and trailers and also by padding the message with data derived from the actual message
(e.g. a modified copy of the message or a hash of the message).

A function introducing redundancy will combine message information with the hash value in order
to create a specially structured field. Doing so may prevent some published attacks (for instance
some attacks based on the multiplicative property of RSA), and allow the verifier to check the
structure of the signed data before verifying the hash itself. Thus it will be possible to distinguish
erroneous signatures:

• produced with a wrong private key (the redundancy is not respected)

• produced with the good private key over corrupted data or on a false hash value (the
redundancy is correct, but the hash is wrong)

Current Standards address this requirement.

The mathematics and usage of RSA can be subject to far subtler attacks and the straightforward
use of random padding and redundancy functions may not always be sufficient. [1], [143] and
[144] provide useful starting points for further reading on this subject, [1] and [140] may also be
consulted about RSA padding.

3 This point is not RSA specific and may be pertinent for any encryption algorithm.

www.epc-cep.eu 24 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Computational Enhancements

RSA computation can be made significantly quicker for the owner of the private key if the
implementation takes advantage of the Chinese Remainder Theorem (CRT). Using the CRT the
signer (or decryptor) performs calculations modulo each prime factor of the RSA modulus N,
instead of performing the calculations modulo N. Because the factors of N are half the length of N,
the CRT method is much faster. The CRT method requires that the prime factors of the modulus
are kept and used for the computation involving the private key. These prime factors must be
stored with the same level of security as the private key.

Using CRT when signing (or decrypting) is purely a local decision and has no impact on the
signature verification process (or encryption process). CRT can make signing and decrypting 3 to 4
times quicker.

Some attacks on RSA implementations using CRT have been published. These attacks involve the
controlled introduction of errors into the signature or decryption computation. They may be
prevented by a sound design (e.g. verify generated signatures before releasing them).

RSA computation can be made significantly quicker for the user of the public key if the public
exponent is small compared to the modulus. This approach is sometimes referred to as low-
exponent RSA. Typical values for the exponent are 3 (low exponent) and 65537 (216+1). The use of
a small public exponent can deliver performance benefits for resource-constrained RSA encryption
and RSA signature verification operations. However, the use of low-exponent RSA may expose the
system to certain attacks when used to perform encryption operations without random padding.
The use of secret random padding becomes even more important when using e=3 (see for
example [144], [150], and [1]). For example, the use of exponent 3 immediately reveals the
plaintext if used for message encryption to at least three recipients (see [144]).

It is also possible to choose small private exponents in case the signature generation or decryption
device is resource constrained. However, there are attacks against this approach (see for example
[144]) and so normally it is recommended instead to use more powerful devices that enable the
completion of signature generation and encryption operations using private exponents that are
the same length as the modulus.

3.1.3.2 Elliptic Curve Cryptosystem (ECC) specific issues
Domain Definition

ECC keys and certificates are claimed to be shorter in terms of storage and communications than
keys and certificates of some other schemes.

Whereas some other schemes, such as RSA, use ordinary integers for the underlying number
system, ECC systems use points that are solutions for a particular elliptic curve, with the result that
ECC systems require users to make a choice of parameters to define the domain:

• The curve itself – defined by two parameters a and b.
• The base field – defined by one parameter q that can be one of two forms; a prime

number or a power of two (binary).
• A point on the curve defined as the generator – parameter G, with its order – parameter n.

For any given domain a large number of key pairs can be created resulting in public keys Q and
private keys d.

In a large multi-user system, the domain parameters could be individually selected by each user or
could be shared by mutual agreement. If the parameters are not shared, then the domain choice

www.epc-cep.eu 25 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

becomes part of the public key. Typically, the domain parameters are some three times the size of
the basic public key.

Domain Sharing

If the domain parameters a, b, q, G & n are all shared, then for each user the public key consists
only of Q. This results in small public keys and the possibility of optimisation of hardware and
software to suite the domain parameters.

If only the base field q is shared, the result is that the public key size increases significantly
(threefold or more), but there may be an advantage from a security point of view.

Finally, if no parameters are shared, but become part of each public key, then there is complete
freedom of choice of the parameters to the user, but a resulting further increase in the public key
size, plus any implementation optimisations will have to be customised for each domain.

It should be noted that sharing domain parameters could increase the prospect of an attack since
the rewards could be perceived as being larger and it may become possible to design attacks that
exploit specific properties of the shared domain parameters.

Computational Enhancements

Computational efficiency is strongly influenced by parameter choice and curves defined over
binary fields, including Koblitz curves, are sometimes selected since scalar multiplication (the
dominant computational step) is efficient. Binary fields can be represented in two forms;
polynomial basis or normal basis – the former being most efficient for software implementations
and the latter for hardware. However, care should be taken with implementations using binary
fields as they are more patented and may be more vulnerable to mathematical attacks. For this
reason, standardised curves over prime fields are recommended.

In addition to standardised curves such as NIST P-256, there are now many new innovative
techniques proposed for ECC cryptography such as FourQ [185] and curve25519 specified in IETF
RFC 7748 [103] (the authors of which cite advantages in performance and security compared to
NIST curves).

If the base field is known in advance, then a speed-up can be obtained by pre-computing certain
components of the calculation and storing as partial results – these are sometimes known as
public key multiples. The technique is applicable for both signing and verification and can be
extended if the public key is also known in advance.

3.1.3.3 Comparison of RSA with ECC
With such speed-up efficiencies the signing performance for ECC can be several times faster than
an RSA implementation, whereas the verification performance can be about twice as slow as RSA
(using e=3).

Storage of an ECC public key including domain parameters and public key multiples can take of the
order of ten times the space of an equivalent RSA key. Storage of an ECC private key takes a little
over twice that of an RSA key. Certificate sizes are comparable, with RSA certificates being some
30% larger for equivalent key strength.

For key generation, then for a known domain, ECC is much faster.

From a security perspective, ECC implementations are thought to be less susceptible to timing and
power analysis attacks than equivalent RSA implementations, although not immune. Fault analysis
attacks which leverage the Chinese Remainder technique used for RSA speed-up have no

www.epc-cep.eu 26 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

equivalent in ECC implementations, however the random numbers used by ECC implementations
are potentially a target for side-channel attacks.

The state of the art in cryptanalysis is not so clear, however, the best-known algorithm to attack
ECC systems (Pollard’s rho4) is less efficient than the Number Field Sieve (NFS) algorithm used to
factor RSA moduli - hence one reason why ECC keys can be shorter. A further advantage is that
Pollard’s rho has no constant in the run-time formula (unlike NFS) and thus the security level for
ECC can be more accurately predicted and the algorithm cannot be “improved” by developments
that lower the value of the constant (although increased parallelisation might). Koblitz curves are
slightly more susceptible and keys should thus be a few bits longer than for generally selected
curves.

In August 2015, the US National Security Agency (NSA) released a major policy statement on the
need for post-quantum cryptography and their preliminary plans to transition to quantum
resistant algorithms [177]. The NSA believes the time is right to make a major push to design
public-key cryptographic protocols whose security depends on hard problems that cannot be
solved efficiently by a quantum computer5. This announcement and in particular certain
peculiarities in the wording have puzzled many people and have given rise to much speculation
concerning the NSA, elliptic curve cryptography and quantum-safe cryptography. A critical analysis
on this has recently been published in [178]. See also section 3.1.5 of this report.

In the table below, the results of the performance comparison between the different algorithms
for usage with digital signatures are listed: τ stands for a negative point, while σ stands for positive
point. For this table, RSA with 1024-bit keys is considered, and the security of the three algorithms
is assumed to be the same.

 ECDSA RSA DSA

Complexity System
Set up

τ (< hours) σ (<Minutes) σ (< Minutes)

Users computational
capacity

σ (simpler chip) τ (more complex
chip)

τ (more complex
chip)

Users storage
capacity

σ (160 bits per key) (*) τ (1024 bits per key) τ (1024 bits per key)

Creation time digital
signature

σ τ (6 times ECDSA) τ (4 times ECDSA)

Verification time
digital signature

τ (4 to 7 times RSA) σ τ (28 times RSA)

Size digital signature σ (320 bits per sig.) τ (1024 bits per sig.) σ (320 bits per sig.)

Table 4: Comparison of signature schemes

4 Newer methods introduced by Antoine Joux against elliptic curves over binary fields are also important to note [199].
5 For many years it has been known that both the integer factorisation problem (upon which RSA is based), and the

elliptic curve discrete logarithm problem (upon which ECC is based), can be solved in polynomial time by quantum
computers.

www.epc-cep.eu 27 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

(*) Note that system parameters and pre-computation storage may be significant and may need to
be taken into account.

One can conclude that ECC signatures schemes such as ECDSA may have advantages over RSA and
DSA in applications where the available computational or data storage capacity in the signer's
hardware is limited, e.g. in smartcard applications. However, unless the system parameters (Base
Field, Curve and Generator) are implicitly known by the verifier, then these also need to be stored
and made available. Sharing and distribution amongst users depends on trust and risk issues and if
none of the parameters were implicitly known it would add approximately an additional 1000 bits
to the storage requirements for ECDSA.

In a similar vein, for maximum performance pre-computation can be used with a trade-off
between the partial results to be stored and the amount of speed-up. For a twofold improvement
approximately 1,300 bytes of additional storage are required.

EPC recommendation 3

Except for systems where computational or data storage capacities are restricted, or where a
strategic long-term migration is needed, there is no strong reason to move from RSA to ECC- based
signature schemes.

3.1.3.4 Algorithm and Key length recommendations
It is difficult to state precise requirements on key lengths without precise details of usage and
implementation. However, it is recommended:

EPC recommendation 4

• No longer use RSA keys of 768 bits and ECC keys of 130 bits, or less.
• Avoid using 1024-bit RSA keys and 160-bit ECC keys for new applications unless for short

term low value protection (e.g. ephemeral authentication for single devices).
• Use at least 2048-bit RSA or 224-bit ECC for medium term (e.g. 10 year) protection (see

[175]).
• For considerations regarding low exponent RSA, section 3.1.3 should be consulted.

Further details are provided in section 3.1.4.

3.1.4 Security levels

Cryptographic algorithms provide different “strengths” of security, depending on the algorithm
and the key size used. The concept of algorithm "strength" expressed in "bits of security" is
described in the NIST guideline on key management SP800-57 [130]. ECRYPT has published a
yearly report on algorithms and key sizes [163] which addresses the same issue (the previous
report was published by ENISA [175]).

Two algorithms are considered to be of equivalent strength for the given key sizes (X and Y) if the
amount of work needed to “break the algorithms” or determine the keys (with the given key sizes)
is approximately the same using a given resource. The strength of an algorithm (sometimes called
the work factor) for a given key size is traditionally described in terms of the amount of work it
takes to try all keys for a symmetric algorithm with a key size of "X" that has no short cut attacks
(i.e., the most efficient attack is to try all possible keys). In this case, the best attack is said to be
the exhaustion attack. An algorithm that has a "Y" bit key, but whose strength is equivalent to an
"X" bit key of such a symmetric algorithm is said to provide “X bits of security” or to provide "X bits

www.epc-cep.eu 28 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

of strength". An algorithm that provides X bits of strength would, on average, take 2X-1T to attack,
where T is the amount of time that is required to perform one encryption of a plaintext value and
comparison of the result against the corresponding ciphertext value.

Bits of
security

Symmetric

key algs.

Hash

functions

RSA

(key length in bits)

ECC

(key length in bits)

80 2TDES (1) 1024 160

112 3TDES
SHA-224

SHA3-224
2048 224

128 AES-128
SHA-256

SHA3-256
3072 256

192 AES-192
SHA-384

SHA3-384
7680 384

256 AES-256
SHA-512

SHA3-512
15360 512

Table 5: Comparable security strengths (adapted from section 5.6 of [130])

Notes:

1. For 2TDES the key strength depends on the number of plaintext and ciphertext pairs the
attacker has available. In those cases where the number is limited, as is often the case for card
payment systems, a 2TDES key can provide as much as 112 bits of security. The depicted
strength of 80 bits shown in the first row of the table occurs only when the attacker has the
possibility and the incentive to collect of the order of 240 plaintext and ciphertext pairs. More
generally when an attacker can collect of the order of 2t plaintext and ciphertext pairs then
they can find one of the keys used with effort 2120-t. The most recent result related to this
attack can be found in [180] in which the author shows that the plaintext and ciphertext pairs
need not all be encrypted under the same key6, and then the attacker will expect to determine
the key used for at least one of the pairs and, moreover, will be able to do so even if only
partial plaintexts are known.

2. There also exist theoretical attacks on 3TDES and AES that reduce the key strength but require
special “unrealistic preconditions” to be feasible. For example:

o [147] shows that with 228 fixed known plaintexts encrypted using 3TDES under different
keys then one of the keys can be recovered with effort 284.

o [161] shows that with 243 fixed known plaintexts encrypted using AES128 under
different keys, one of the keys can be recovered with effort 285.

Section 3.4 of the NIST publication SP800-67 [131] makes the following observation on 2TDES and
3TDES7:

6 It had previously been thought that the pairs had to have been created using the same key.

7 Note that NIST Recommendation SP800-67 caters for the protection of any type of information, rather than specific
payment transactions; it applies to “all federal agencies, contractors of federal agencies, or other organizations that

www.epc-cep.eu 29 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

“The security of TDEA is affected by the number of blocks processed with one key bundle. One key
bundle shall not be used to apply cryptographic protection (e.g., encrypt) to more than 220 64-bit
data blocks.

Note that this limitation applies to a key bundle with three unique keys (i.e., 3TDEA); the use of
TDEA with only two unique keys (i.e., 2TDEA) shall not be used to apply cryptographic protection
(see section 3.1).

Also, note that in the previous version of SP 800-67 (dated January 2012), 3TDEA was limited to
processing 232 64-bit blocks, and 2TDEA was limited to 220 blocks. These prior limitations should be
considered when processing information protected using the 2012 or the original version of SP 800-
67 (e.g., determining the risk of accepting the decrypted information when the limit provided in
this revision for 3TDEA is exceeded or the information was encrypted using 2TDEA).”

Moreover in March 2019 NIST published a 2nd revision of NIST SP 800-131 [133] in which they
disallow encryption of data using 3TDES after 2023. Similar recommendations have meanwhile
been published by the German BSI [200] .

Consistent with the above, the EPC recommendation is to use AES rather than TDES for all new
payment systems. EPC further recommends to only continue to use TDES in existing payment
systems for which doing so is assessed as sufficiently secure.

When collision resistance is not required the security level of hash functions is doubled. The
collision resistance strength of SHA-1 is about 63 bits.

• For DSA and DH the key sizes are comparable to RSA, with subgroup parameter
comparable to ECC. For the purposes of these recommendations, RSA key lengths that,
due to implementation constraints, are slightly less than 2048 bits (e.g. 1976 bits) have
equivalent security to 2048-bit RSA.

• Some additional information on key strengths for AES and RSA and ECC is provided in
[163], [168] and [169].

3.1.5 Quantum computing considerations

For protecting long-term secrets, including secret keys, it might be useful to consider current
developments in physics: there is a possibility that so called "quantum computers" could be built
in the next decades on a scale that is relevant to breaking cryptography.

Such devices could solve certain cryptographic problems with lower complexity than current
computers and so if these computers would become reality then new cryptographic algorithms
would be necessary: these are called “quantum resistant” algorithms or alternatively “post-
quantum crypto” algorithms.

In order to better assess the probability and impact of this happening, some supporting facts and
observations are summarized hereafter.

3.1.5.1 Impact on cryptographic primitives
The crypto-breaking algorithms that would run on a quantum computer are very different from
the algorithms that attack today’s crypto such as the Number Field Sieve. The two quantum
computer algorithms relevant for cryptography:

process information (using a computer or telecommunications system) on behalf of the Federal Government to
accomplish a federal function”.

www.epc-cep.eu 30 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

• Shor's algorithm reduces the complexity of solving both RSA and elliptic curve-based
problems enormously. The key length increase needed to compensate for this results in
key sizes that are not practical.

• Grover's algorithm seemingly enables a search of the key space of secret key-based
algorithms in a time proportional to the square root of the key space. Grover’s algorithm
can also be applied to hash functions.

However further analysis of the small print of Grover's algorithm reveals that pre-quantum
security can be maintained with less effort than doubling key lengths:

1 Grover’s algorithm does not benefit from linear speed-up through parallelisation. To obtain
a 1,000-fold speed-up when using Grover's algorithm a million quantum computers would
be needed8.

2 In combination with this the quantum attack work function on AES-128 is estimated to be
2101 where 264 operations are performed on a single quantum machine9 and this indicates
AES-128 could remain fit for purpose in many contexts. See also [195].

Indeed in https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/faqs #008, NIST notably
stated that when taking all considerations into account, "it becomes quite likely that variants of
Grover’s algorithm will provide no advantage to an adversary wishing to perform a cryptanalytic
attack that can be completed in a matter of years, or even decades". At the end of this FAQ NIST
concludes that AES 128 will remain secure for decades to come.

Assuming (very) optimistically that attackers would have access to quantum computers that have
the required performance (see 3.1.5.2), the following changes would have to be made to current
cryptographic primitives to stay at a comparable security level:

• Current public key cryptosystems will have to be replaced by a new class of “quantum
resistant” public key cryptosystems that is currently in development. As of this writing, no
standardised efficient quantum resistant public key cryptosystems are available although
some vendors have experimented with them (for example, Google have implemented a
quantum secure key exchange algorithm for TLS 1.3). ISO and NIST have begun a
standardisation work item but this is not likely to be completed before 2023. NIST has
reduced the set of candidate post-quantum crypto algorithms to 7 'finalists': 4 key
establishment algorithms and 3 signature algorithms (see
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions). NIST
has also standardised stateful hash schemes that are quantum resistant [136].

• Secret key-based cryptosystems do not have to be replaced. Doubling of pre-quantum key
lengths from 128-bits to 256-bits would maintain the pre-quantum security level against a
quantum capable adversary with an 'idealised' Grover's algorithm, however considering
the actual algorithm's details then such doubling appears unnecessary.

• Hash function based systems that require one-wayness will have to use hash functions
such as SHA-256 that are (pre-quantum) collision resistant10, see [187].

8Grover’s quantum searching algorithm is optimal, Christof Zalka, https://arxiv.org/pdf/quant-ph/9711070.pdf
9Quantum Resource Estimation, Vlad Gheorghiu,

https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S03_THREATS/
10This is because Grover’s algorithm implies that there is not much difference between second preimage resistance and

one-wayness (as defined in 2.1.1.1) anymore.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/faqs
https://urldefense.proofpoint.com/v2/url?u=https-3A__csrc.nist.gov_projects_post-2Dquantum-2Dcryptography_round-2D3-2Dsubmissions&d=DwMFaQ&c=uc5ZRXl8dGLM1RMQwf7xTCjRqXF0jmCF6SP0bDlmMmY&r=kaURLuBBPEcdm1Ua2G_chuMqhXHK01GMJujdjTVnGfk&m=M-AAfE4tOJFWWSrCTmEQpmn3cxoy3RusClgtb1OFHYc&s=tWEnIjDBzLtQ5V2r6ulebos_9_1kUlkt_kM2TmA4Jsk&e=
https://arxiv.org/pdf/quant-ph/9711070.pdf
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S03_THREATS/

www.epc-cep.eu 31 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

• Although no quantum computing attacks on the data block size of block ciphers are
known, Grover’s algorithm could reduce the effort for dictionary-based attacks; therefore,
block ciphers with small data block size (smaller than 128 bits) are to be avoided (or
should strengthen mitigations against dictionary attacks).

To ensure a smooth transition to PQC primitives, crypto agility - as recommended by NIST [201]
and BSI [202] - should be integrated into the cryptographic services’ pipeline.

3.1.5.2 Current progress in quantum computers
The most important measure for the performance of a quantum computer is the number of
“qubits” it has. A qubit is a quantum bit in a yet unknown state of either 0 or 1, which will be
revealed at the end of the computation. Gate time is also an important measure (this is currently
20Mhz, but risk assessments should anticipate increases).

For cryptographic purposes, the number of qubits needs to be at least as high as the number of
key bits, but sometimes even much higher. This observation on its own suggests that secret key
based cryptosystems might be impacted before classical public key cryptosystems like RSA (with
thousands of key bits).

Moreover, implementations of qubits suffer from “decoherence” where the information is lost to
the environment. This problem can be addressed by combining a number of “physical” qubits into
“logical” qubits, dramatically increasing however the number of required qubits (e.g. increasing
the number of qubits needed for breaking today's cryptosystems from thousands to millions).

Both aspects eventually explain why current time estimates for the availability of quantum
computers able to break specific cryptographic algorithms vary widely. At the time of writing,
quantum computers of about seventy physical qubits are available, and much research is being
done to increase this number. They should not be confused with a completely different type of
quantum computer that solves a very different type of problem and that is apparently already
available with thousands of qubits (e.g. D-Wave 2000Q). D-Wave computers use quantum
annealing, but there is no evidence that this technology can be used to perform general quantum
computations as would be needed for breaking crypto primitives. Current research progress
suggests that quantum computers capable of attacking cryptosystems of hundreds, let alone
thousands, of key bits are still decades away and would require the allocation of resources similar
to the Apollo space program (see for example “Status of quantum computer development” by BSI
[198]).

Many parties that invested in quantum computer research feel the need to publish about the
research, even though not much progress is obtained. This situation is not likely to change in the
near future. For example, there are publications on factoring small numbers using a quantum
computer that use Grover’s algorithm rather than Shor’s.

Note that quantum computers have nothing to do with “quantum cryptography” that uses
physical principles to establish cryptographic keys; these methods allow a different kind of
protection that is outside the scope of this document. Currently, these techniques do not offer any
advantages over “regular” cryptography.

EPC recommendation 5

In view of the current, published progress of quantum computing initiatives, if long term
confidentiality (that is, for several decades) is required the use of a 16-byte block cipher

www.epc-cep.eu 32 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

such as AES 256 is recommended. AES-128 will remain fit-for-purpose for shorter
confidentiality requirements.

Where asymmetric primitives are used, crypto agility - as recommended by NIST [201]
and BSI [202] - should be integrated into the cryptographic services’ pipeline. Such
integration will enable a swift migration to the use of standardised post-quantum
asymmetric cryptographic primitives if the need arises.

3.1.6 ISO Recommendation for Financial Services

In the ISO Technical Report [3], ISO TC 68 provides a list of recommended ISO cryptographic
algorithms for use within applicable ISO TC68 – Financial Services standards. It also provides
strategic guidance on key lengths and associated parameters and usage dates. It should be noted
that this ISO report was published in 2010 and is currently being revised.

The focus is on algorithms rather than protocols, and protocols are in general not included in this
document. However, in some cases, for example for some key agreement and some
authentication protocols, there is no "underlying" algorithm, but the protocol in a sense is the
algorithm. In this case the mechanisms are included, in particular where they have security
parameters that can be adjusted for higher or lower security.

Algorithmic vulnerabilities or cryptographic keys of inadequate lengths are less often the cause of
security compromises in the financial industry than inadequate key management or other
procedural flaws, or mistakes in the implementation of cryptographic algorithms or the protocols
that use them. However, compromises caused by algorithmic vulnerabilities are more systemic
and harder to recover from than other kinds of compromises.

This document deals primarily with recommendations regarding algorithms and key lengths. For
standards on key management, see ISO/IEC 11568 [8].

The categories of algorithms covered are:

• Block ciphers
• Stream ciphers
• Hash functions
• Message authentication codes (MACs)
• Asymmetric algorithms
• Digital signature schemes giving message recovery
• Digital signatures with appendix
• Asymmetric ciphers
• Authentication mechanisms
• Key establishment and agreement mechanisms
• Key transport mechanisms.

This document does not define any cryptographic algorithms, however the standards to which this
document refers may contain necessary implementation information as well as more detailed
guidance regarding choice of security parameters, security analysis, and other implementation
considerations.

www.epc-cep.eu 33 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

3.2 Constructions

3.2.1 Symmetric Encryption

This report considers two types of symmetric encryption: block ciphers in a mode of operation and
stream ciphers.

3.2.1.1 Block Cipher Modes of Operation
A block cipher is a keyed function that encrypts an n-bit block of data, where n is a fixed
characteristic of the cipher, or a chosen parameter. For the purposes of this report it is an example
of a ‘primitive’ cryptographic function. Within the financial industry, TDES and AES are the most
commonly used block ciphers. These ciphers have different block and key lengths as detailed
below.

Block ciphers are standardised in ISO/IEC 18033-3 [59].

Messages exceeding the block size are partitioned into blocks and are then processed using the
block cipher11 in one of its Modes of Operation (see ISO/IEC 10116 [23]). The Modes defined in
[23] are:

• Electronic Code Book (ECB)
This is the simplest mode. Each block of data is encrypted independently using the block cipher.
This method can be subject to cryptanalysis based on known ciphertext (or "dictionary attacks")
and so is rarely used for messages longer than one block. The use of ECB is discouraged except for
exceptional purposes.

• Cipher Block Chaining (CBC)
This mode of operation is the most commonly used. It solves the problems with ECB mode by
adding the last cipher block to the next plaintext block before encryption. Specifically each input
block is first xor’ed with the encrypted text of the previous block (or an initialising vector for the
first block in the sequence), and then the result of the xor’ing is enciphered with the block cipher.

The resulting cipher is secure under common definitions of security, but only if the initialisation
vector added to the first block is chosen freshly random, independently from the entire message
content.

• Cipher Feedback (CFB) and Output Feedback (OFB) modes
In their simplest form, the input message is partitioned into a stream of r-bit blocks (r<=n) and
each block of this input stream is encrypted to a cipher stream block by xor’ing it with a key
stream block:

• in CFB each key stream block is created by truncating to r bits the encipherment of a block
of a feedback buffer containing previous cipher stream blocks (or an Initialisation Vector
(IV) block if first in sequence).

• in OFB each key stream block is created by truncating to r bits the encipherment of the
previous key stream block (or an IV block if first in sequence).

It may be noted that CFB mode is self-synchronising (decryption can start in the middle of a
message without having to know the exact position in the key stream).

• Counter (CTR)

11 For messages shorter than the block size, one block is built using a suitable padding technique.

www.epc-cep.eu 34 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

This mode operates like a stream cipher.

The input message is partitioned into a stream of r-bit blocks (r<=n). Each block of this input
stream is encrypted to a cipher stream block by xor’ing it with a key stream block. Each key stream
block is generated by encrypting an incrementing counter block. The first counter block is
initialized with a starting variable and it is important that this variable is such that the value of
counter blocks never repeat during the lifetime of the key.

The five modes have different properties from one another (e.g. error propagation, self-
synchronising) and security. They require specific techniques for partitioning into blocks (using
padding bits and auxiliary data) and IV management. ISO/IEC 10116 [23] should be consulted for
more information on these modes including their usage and security properties.

Other modes have been described in ISO TR 19038 [7]. These include pipelined and interleaved
modes of CBC, CFB and OFB for TDES and Counter Mode.

Attacks on encryption in the last decade have led the industry to recognise that generic encryption
should also be authenticated. Authenticated encryption modes are addressed in section 3.2.6.

3.2.1.2 Stream ciphers
A stream cipher is a symmetric key cipher where plaintext digits are combined with a
pseudorandom cipher digit stream (keystream). In a stream cipher, each plaintext digit is
encrypted one at a time with the corresponding digit of the keystream, to give a digit of the cipher
text stream.

Stream ciphers may be found in ISO/IEC 18033-4 [60] and also include CHACHA20 as described by
IETF in [108].

3.2.1.3 Format preserving encryption
Format Preserving Encryption (FPE) encrypts a piece of data into a form that is the same as the
original format. For example, the most common application is to encrypt decimal numbers into a
new number of the same length. FPE encryption of data allows the data to be processed using the
same methods as the original data. Two potential applications of FPE are:

• Tokenization: for processing payment cards with encrypted card numbers (PAN), a token is
generated by encrypting the card number with FPE. Where needed, the original card
number can be obtained from the token by decryption.

• Generation of card numbers: simply encrypting a counter will generate all possible
numbers in a random order, which can be used to make card numbers that are impossible
to predict.

The first FPE algorithms were designed in 2006 and are now reaching the point where the
algorithms are standardized.

NIST has standardized two different FPE functions ([128]), which are in draft at the time of this
writing. Both functions use a regular block cipher as a building block, so that FPE can be used with
regular AES keys.

3.2.2 Asymmetric Encryption

Due to performance limitations, asymmetric algorithms are not recommended for bulk data
encryption but rather for encrypting symmetric keys and performing signatures. Therefore, the

www.epc-cep.eu 35 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

typical way of using asymmetric cryptography for encrypting data involves hybrid techniques (see
next section).

3.2.3 Hybrid Encryption

Hybrid encryption combines the key management advantages of asymmetric schemes with the
efficiency of symmetric schemes.

Hybrid encryption can be understood as an asymmetric scheme based key establishment
combined with a symmetric encryption scheme.

Hybrid encryption using RSA

To encrypt a message, a key for a symmetric encryption scheme (and optionally for a MAC) is
chosen at random. The message is encrypted under the symmetric scheme (and optionally
MACed). The symmetric keys are in turn encrypted with an asymmetric scheme under the
receiver's public key. Both the symmetric ciphertext and the encrypted keys constitute the final
ciphertext that is transmitted to the receiver. The receiver can recover the symmetric keys using
his private key. He can then (optionally verify the MAC and) decrypt the message.

A good example of a hybrid encryption scheme is the RSAES-OAEP encryption scheme based on
the Optimal Asymmetric Encryption Padding (OAEP) by Mihir Bellare and Philip Rogaway [146].

Hybrid encryption using Diffie-Hellman

To encrypt a message, the sender derives a random value using the recipient’s public key. The
random value is then used to derive symmetric keys that are used to encrypt the message. The
random value can also be derived by the recipient using their private key who can then derive the
same symmetric keys so as to decrypt the received message.

A good example of hybrid encryption using Diffie-Hellman is ECIES. See also section 4.2.5.

Hybrid encryption schemes are defined in PKCS#1 [113], in IEEE P1363-2000 [142] and in ISO/IEC
18033-2 [57].

3.2.4 MACs

If only data integrity or authentication is required for a message, a Message Authentication Code
(MAC) can be appended to it. If in addition, confidentiality should be ensured, authenticated
encryption should be applied, see section 3.2.6.

EPC recommendation 6

Although many legacy systems currently still use MACs based on DES or TDES, new
systems should use CMAC based on AES, or HMAC.

3.2.4.1 CBC MACS
For CBC MACs, the MAC code is calculated as the final ciphertext block (often truncated to three
or four bytes) of the CBC encrypted message. For computing MACs, the most commonly used
block cipher algorithm is the TDES algorithm (more details on MAC computation may be found in
ISO/IEC 9797-1 [27]).

Retail and wholesale requirements for MACs are defined in ISO 16609: “Banking - Requirements
for Message Authentication using symmetric techniques” [6]. This standard, which combines and
replaces two separate retail and wholesale MAC standards, identifies two approved
implementations of CBC MACs that are defined in ISO/IEC 9797-1. Namely Algorithm 1 (plain CBC)
using TDES as the block cipher and Algorithm 3 (CBC with two-key EDE on final block) using single

www.epc-cep.eu 36 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

DES as the block cipher. In regard to the security analyses Annex B of ISO/IEC 9797-1, the standard
recommends that implementations of Algorithm 1 consider using Padding Method 3 (where the
length is coded in the padding) and that implementations of Algorithm 3 consider using session
keys. Furthermore, both implementations should consider using truncated MACs that are shorter
than the block length (see also section 3.2.4.3).

The CMAC mode of NIST can be used to compute MAC values based on AES. See [126] and
Algorithm 5 of [27].

3.2.4.2 Hash MACS
Applications may sometimes need to build keyed authentication functions from hash functions.
This may either be because the resultant function is faster or more secure or because they happen
to have access to the primitive hash function but not an encipherment function. HMAC defined in
ISO/IEC 9797-2 [28] is an example of such a function. A NIST standard FIPS 198 "The keyed-hash
Message Authentication Code (HMAC)" [86] which claims to be a generalisation of RFC 2104 [93]
and of the withdrawn ANSI X 9.71 was published in 2002.

The MAC function described in ISO/IEC 9797-3 [29] use so-called universal hash-functions such as
POLY1305.

3.2.4.3 Length of MACs
MAC algorithms often output a data block that is then truncated to form a MAC of shorter length
(e.g. CBC MACs that truncate the output from 8 bytes down to 4 bytes or in some cases even 3
bytes). This approach clearly reduces the amount of data that needs to be sent to the recipient but
in certain circumstances it can actually increase security as it provides a would-be attacker with
less information to work with.

However, an argument against the use of short MACs is that the chances of an attacker being able
to guess a short MAC are greater than those for longer MACs. As a rule of thumb for estimating a
minimum MAC length, the cost of guessing a MAC value must be balanced against the profit for
guessing it correctly, from the viewpoint of an attacker.

For example, if a MAC is used to protect a payment of up to €100, and an attacker can get away
with a few inconspicuous attempts per day at €.01 per attempt.

Then if the probability of guessing the MAC right is less than 1 in 10000, the expected gain of
guessing is less than the cost of an attempt. The minimum MAC size is 14 bits in this case.

Annex B of [27] contains security analyses relating to length of MAC.

3.2.5 Digital Signatures

Digital Signature functions typically use a public key algorithm, the private key providing the
signature function and the public key providing the verification function.

In most cases, a digital signature function is a complex process in which one or more
transformations may be applied to the data to be signed before the cryptographic operation is
performed. This process is sometimes called a digital signature scheme.

The ISO/IEC 9796 [25] and ISO/IEC 14888 [46] standards and IEEE P1363 [142] describe signature
schemes using Integer Factorisation methods (i.e. RSA [137]) and Discrete Log methods. The
PKCS#1 [113] specification describes schemes based on RSA.

www.epc-cep.eu 37 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

3.2.5.1 Signatures with appendix and signatures with message recovery
The most general type of digital signature scheme is one that conforms to the hash and sign
paradigm. In this case the signed message comprises the whole message in clear appended with a
signature block. This type of scheme is known as signature with appendix.

If, however, the message to be signed is very small and bandwidth is limited then a signature
scheme with “message recovery” may be attractive. In this case the signed message comprises
part of the message in clear appended with a signature block, and that part of the message not
sent in clear is recovered from the signature block during the signature verification process. The
bandwidth saving (i.e. the amount of message that can be embedded in the signature and
therefore recovered from it) is upper-bounded by the key size less the hash size. Thus, if the
message is small compared to the key then the whole message might be recovered from the
signature and no part of the message need be sent in clear.

ISO/IEC 14888 describes signature schemes with appendix and ISO/IEC 9796 describes signatures
schemes with message recovery.

The EMV specifications [123] use the first of the three RSA-based mechanisms standardised in
ISO/IEC 9796-2, but this mechanism is not recommended for new systems.

3.2.5.2 Length of Hash
The length of the hash is important because:

• The application of the signature scheme may require that it be collision-resistant and in
this case 160-bit hashes (which provide at most an 80-bit security level) may not be
suitable.

• It must be consistent with the algorithm and key size.

3.2.5.3 Efficiency
This sub-section provides a comparison between three digital signature schemes: RSA [25], DSA
[79] and a digital signature scheme based on Elliptic Curves [84].

Comparison criteria for digital signature schemes

The following aspects are of importance with respect to digital signature schemes:

• Security
• The certainty that the digital signature is uniquely linked to the signatory and to the data

being signed
• Complexity of setting up the system
• Here a distinction is made between the one-time generation of the system parameters

(used by all users) and the generation of the key-material (user specific).
• Required computational capability of users’ hardware
• The complexity of the hardware required for users to employ the system (e.g. a simple

smart card, or a Pentium processor).
• Required data storage capability of users’ hardware
• The required capability for storing the system parameters, public keys and private keys.
• Required time for creating a digital signature
• Required time for verifying a digital signature
• Required space for storing a digital signature (i.e. the size of a signature).

www.epc-cep.eu 38 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

To employ digital signatures not only cryptographic techniques are required, but also other
security techniques (e.g. hashing, time stamping, smart cards). Moreover, also non-technical
measures (e.g. procedural, organisational, legal) and services (e.g. TTPs) are required. These are
not discussed in this sub-section.

3.2.6 Authenticated Encryption

If a message requires both confidentiality and integrity protection, then one may use encryption
with either a MAC or a signature. Whilst these operations can be combined in many ways, not all
combinations of such mechanisms provide the same security guarantees. For this reason, special
dedicated constructions have been designed and standardised in ISO/IEC 19772 [62]. These
constructions can provide the optimum level of security and efficiency. They typically involve
either a specified combination of a MAC computation and data encryption, or the use of an
encryption algorithm in a special way such that both integrity and confidentiality protection are
provided. The constructions are:

• OCB (Offset CodeBook)12,13
• AES Key Wrap (from NIST and RFC 3394)
• CCM (Counter with CBC-MAC)
• EAX (by Bellare, Rogaway and Wagner)
• Encrypt then MAC
• GCM (Galois/Counter Mode)

These methods can provide both confidentiality and authenticity/integrity protection under the
same symmetric key and provide better performance and simplified key management as opposed
to separate encryption and authentication.

Another construction is MAC then Encrypt where the MAC is used as an IV for the encryption. This
kind of method has a proof of security in the form of SIV [167] and has been standardised in ISO
2003814 Banking and related financial services - Key Wrap [14] and is used to protect keys15 using
AES.

Another popular method for authenticated encryption is the combination of CHACHA20 with
POLY1305 as described in [107].

For further information on authenticated encryption see [163].

3.2.7 Distributed ledger technologies

3.2.7.1 Introduction
A growing number of financial institutions are investing in distributed ledger technology (DLT)
projects. The stated objectives of these investments often relate to transaction cost savings,
business process streamlining, expedient and more efficient service deployments and immediate
transaction settlement in the absence of a central counterparty.

12 OCB patent status can be found at http://www.cs.ucdavis.edu/~rogaway/ocb/
13 Note that OCBv2.0 has been recently broken and should not be used (see https://eprint.iacr.org/2018/1040,
https://eprint.iacr.org/2018/1087, https://eprint.iacr.org/2018/1090, https://eprint.iacr.org/2019/311 and is
currently being removed from ISO/IEC 19772.
14 based on ANSI TR31
15 sometimes referred to as key bundles or key blocks

http://www.cs.ucdavis.edu/%7Erogaway/ocb/
https://eprint.iacr.org/2018/1040
https://eprint.iacr.org/2018/1087
https://eprint.iacr.org/2018/1090
https://eprint.iacr.org/2019/311

www.epc-cep.eu 39 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Distributed ledgers refer to databases distributed across multiple sites (network nodes) - typically
connected in a peer-to-peer network architecture - with each node sharing a consistent copy of
the database. Dedicated distributed ledger network nodes confirm the integrity/ authenticity of
proposed changes and proceed to update the ledger dataset through a decentralised consensus
protocol. Consensus protocol types used comprise (i) Proof of Work, whereby computational
power is used to solve a hard problem before the solution is submitted for validation to other
network participants (ii) Round Robin, whereby nodes take turns to introduce changes to the
ledger, (iii) Proof of Authority/Identity, whereby the ability of a node to introduce changes to the
ledger is determined by the identity of the entity that operates the node and the reputation of the
node among network participants; (iv) Proof of Elapsed Time, whereby nodes are assigned random
(and verifiable) waiting times before they are allowed to introduce changes, (v) Voting protocols,
whereby candidate database changes are submitted for approval to designated/approved network
nodes that subsequently vote to commit a proposed change to the database using a number of
protocols16 that may incorporate protection against corrupted/malicious or unavailable voting nodes
as detailed in [199].

Distributed ledgers that have no restrictions on which node can introduce changes to the ledger
(permission-less) often use a “Proof of Work” based consensus protocol. A disadvantage of such a
protocol is the large amount of computational effort and resources that is needed to obtain
sufficient security and associated power consumption and dedicated hardware costs.

Committed updates to a distributed ledger are subsequently broadcasted to as many network
nodes as possible to deter attempts by malicious adversaries to promote tampered versions of the
database. Users will typically retain updated partial copies of the distributed ledger in their own
devices and seek access to multiple nodes that contain full copies of the distributed ledger before
submitting a change to its contents.

3.2.7.2 Blockchain networks
A specific type of distributed ledger is a blockchain where all database records are
cryptographically bound (“chained”) together in contiguous blocks. Thus, a blockchain allows users
to verify the sequence of committed database changes and to review all previous changes to a
database record. This process makes sure that older entries are progressively harder to forge, but
intrinsically delays the attainment of consensus until a number of newer blocks have been
produced.

Blockchains can be categorized based on their permission model, which determines who is
authorised to update them (publish new blocks). Blockchains that allow anyone to publish new
blocks are categorised as permission-less; blockchains that allow only particular, authorised users
to publish new blocks are permissioned. Permission-less blockchain networks underpin the
operation of major cryptocurrencies. Permissioned blockchain networks are typically deployed by
groups of individuals or organisations that know each other to facilitate the secure exchange of
assets.

The functional characteristics of a blockchain (decentralised operation, transaction integrity
protection, usability in the absence of a central authority that ensures the integrity/authenticity of
database changes) made it an attractive technology to use for the first widely-used cryptocurrency
implementation launched in 2008, Bitcoin (BTC). Cryptocurrencies are digital assets that act as a
medium of exchange and use some type of blockchain to secure transactions, to control the

16 Random selection of staked users, leader-based, multi-round voting, coin-aging, delegate-based

www.epc-cep.eu 40 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

creation of new units and to verify the transfer of assets across parties in the absence of a central
issuing authority. A number of cryptocurrencies are now widely used (BTC, Ethereum, XRP, Tether,
BitCoin Cash, Chainlink, Litecoin) for payment and investment purposes. Cryptocurrencies have
attracted a lot of support (and criticism) by retail users, technology providers, social media
platform operators, financial service industry stakeholders and by financial service regulators.
Additionally, a number of central banks are assessing the benefits of issuing digital currencies
(CBDCs) that leverage blockchain technology and digital tokens to represent a centrally-controlled
digital instance of an existing currency. The operation of organised cryptocurrency exchanges
across the EEA and in the UK is now being regulated for anti-money laundering (AML) purposes.
Most regulated financial service providers do not use cryptocurrencies in payment interactions
with retail or corporate customers.

There is however, growing investment and financial services’ industry participation in dedicated
distributed ledger architectures established by industry & technology consortia.

3.2.7.3 Security considerations
By design, distributed ledgers replicate data across a wide array of sites (network nodes);
additionally, in permission-less blockchains users can review the entire blockchain at any time.
This can have a potentially negative impact on the confidentiality of data stored in the blockchain
that should be considered by potential users.

Blockchains use cryptographic primitives to secure underlying operations. These comprise hashes
(using algorithms like SHA-256, Keccak17, RIPEMD-160) and asymmetric key cryptography
primitives (ECDSA) to verify transactions and to derive user addresses.

In that respect, the statements and Recommendations that appear in sections 3.1.1, 3.1.3, 3.1.4
and 3.2.5 on the use of (and long-term security properties afforded by) such primitives should be
considered by users attempting to assess the security of a blockchain.

Key management recommendations for asymmetric algorithms - related to key generation, usage
and lifecycle management - detailed in section 4.2 should also be followed by distributed ledger
users.

A challenge that is specific to blockchains relates to the hijack of the consensus protocol that is
used to review proposed changes and commit these to the blockchain (51% attack)18. To carry out
such an attack, the attacker must garner resources to outpace the block creation rate of the
remaining nodes of the blockchain network (holding more than 51 % of the resources applied
towards producing new blocks). Depending on the size of the blockchain network, this may be a
prohibitively expensive attack that can only be carried out by state-level actors. The cost to
perform this type of attack increases the further back in the blockchain the attacker wishes to
make a change. This attack is not technically difficult; it just carries significant cost associated with
obtaining the necessary computational power. The robustness of the consensus protocol and its
ability to recover from error conditions (duplicate changes caused by network latency, malicious
or adversarial validator nodes etc.) is an additional parameter that blockchain users should
consider.

17 Selected by NIST to as the winner of the SHA-3 competition
18 See “Majority Attack” in the Bitcoin Wiki, https://en.bitcoin.it/wiki/Majority_attack

www.epc-cep.eu 41 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Finally, the scalability and performance constraints of some blockchain implementations makes
their use problematic for certain financial service use cases. The need to store/update all data
pertaining to a blockchain may create problem for individual users if the general ledger continues
to grow at a rapid rate19. Additionally, the speed at which a given block update is processed or
committed in some blockchain network implementations may not be sufficient or acceptable20for
certain use cases.

EPC recommendation 7

Financial service providers that decide to deploy distributed ledger-based services or processes
should:

• Confirm the security properties afforded by the distributed ledger to its users,
• Identify the cryptographic primitives used to validate and commit changes to the ledger

and confirm the status of cryptanalysis targeting these primitives,
• Identify the consensus protocol used to commit changes to the ledger and assess the

feasibility of a successful consensus hijack attack.
Further information on distributed ledger technology may be found in [80], [188] through [193],
[197] and [199]. Additionally, the work of international standardisation bodies on blockchain and
distributed ledger technologies (e.g. ISO/TC 307) should be monitored.

3.3 Domain of Application

Algorithms may be selected according to the domain of application for which they were designed
or for which they are best suited. Such domains may be:

• Electronic and mobile banking,
• On-line transactions - retail (PIN generation or PIN verification),
• On-line transactions - host to host,
• Batch transfer of individual transactions,
• File transfer (EDI),
• Email,
• Electronic purse,
• Debit or credit cards,
• Secure back-up
• ...

When the domain of application is concerned, typical criteria that may be used to select the most
appropriate algorithm and key management scheme may be:

• Expected performance (including response time requirements in interactive systems),
• Volume of data to protect,
• Key management suitable for an open or closed user group,
• Necessity to use a Trusted Third Party and acceptance of such a TTP by the users,

19 For example, the Bitcoin blockchain was 310Gb (in November 2020) and had grown 25% in size in the last 12 months.
20 The Bitcoin blockchain is restricted to a sustained rate of 7tps, Ripple (XRP) can process 1700tps. The international
payment card schemes can process over 20,000tps.

www.epc-cep.eu 42 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

• Scalability,
• Costs (to set up the system and to keep it running),
• Perceived sensitivity of the data to protect,
• Requirements on how long time protection is needed
• ...

3.4 Implementation and interoperability issues

3.4.1 Security protocols

As soon as different applications using cryptographic techniques must interact many design issues
must be addressed. The choice of appropriate algorithms and modes of operation is the most
obvious decision to make but is far from being sufficient. Data formatting issues, padding or
redundancy rules, filtering of binary results, interactions between compression, confidentiality and
integrity techniques, scope of application of the algorithms and bit ordering issues are examples of
typical sources of operational difficulties.

Solving such problems may be easy in a closed user application, but if interoperability within an
open environment is required, then all these issues must be resolved, if not by a previous
agreement then automatically set up by means of a security protocol.

SSL or S/MIME in the Internet world are examples of such security protocols.

This issue is not covered satisfactorily by any international standard. The standards from the set of
ISO/IEC 10181 "framework standards" [16] define the conceptual models for authentication,
access control, non-repudiation, integrity, and confidentiality, but are not aimed at being sufficient
to define unambiguously a security protocol.

EPC recommendation 8

In designing a security protocol, the following should be identified:

• the security service provided,
• the entities involved,
• the security verification values (MACs, hashes, digital signatures, ...) that will need to

be generated and verified,
• the algorithms and their modes of operation,
• the key material to be generated,
• the random number generators to be used (e.g. key generation, challenges, padding),
• the key establishment material (this could be key names, encrypted session keys,

public key certificates or certificate references, initialisation vectors if any, ...),
• unambiguous definition of the data used as input in the cryptographic mechanisms,
• the formatting techniques used in the signature generation/verification process,
• the transformation techniques used to represent binary data (known as filtering), if

any.
As an example, one might consider TLS 1.3 (see [108]) which is a new version of the popular TLS
secure messaging protocol that improves security over the previous versions:

• by fixing flaws in the protocol;
• removing support for insecure cryptographic protocols and ciphers;

www.epc-cep.eu 43 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

• introducing the use of “ephemeral key exchange” to provide security against adversaries
that store communication to break it in the future when private keys are exposed.

Since the publication of TLS 1.3 on March 21, 2018, it is time to reconsider which versions of TLS
are sufficiently secure. At least, TLS 1.0 and 1.1 should no longer be used. Since its introduction in
August 2008, TLS 1.2 provides protection against many security problems of the earlier versions of
the protocol. All earlier TLS versions were supposed to have been updated a few years ago.

The restriction of the use of earlier versions of TLS (TLS 1.0/TLS 1.1) will help address
communication security flaws; the enforcement of such restrictions must be the highest priority
for financial service providers in order to secure remote communication sessions with their
customers, partners and 3rd party service providers. The large internet browser vendors (Google,
Apple, Microsoft and Mozilla) have all removed TLS 1.0 and TLS 1.1 support from recent versions
of their respective browsers; all recent versions of mainstream browsers already support TLS 1.3
(see https://security.googleblog.com/2018/10/modernizing-transport-security.html). Enabling
(and promoting) the use of TLS 1.3 further increases security for remote communication sessions.
The continued usage of TLS 1.2 is still acceptable to ensure backwards compatibility with legacy
systems that are less frequently updated, especially if used in conjunction with ephemeral
DH/ECDH cipher suites or HSM-protected Server keys.

The continued use of legacy systems that are still forced to use TLS 1.1 or TLS 1.0 for remote
communications must be subjected to ongoing security risk assessment; those earlier TLS versions
notably have known and easily exploitable vulnerabilities, under any of the following conditions:

• The TLS connection is public, i.e. exposed to the Internet,
• The TLS connection is used for browser-based access.

EPC recommendation 9

• Use TLS with secure cryptographic primitives and appropriate key sizes (c.f. 3.1.3.4),
• Enable TLS 1.3 support in all new systems (offers forward-secrecy by default),
• Enforce the use of TLS 1.2 or higher for all use cases (preferably with ephemeral cipher

suites),
• Do not use TLS versions older than TLS 1.2 because of known and exploitable

vulnerabilities (unless such use is approved in specific use cases through ongoing
security risk assessment).

3.4.2 Data formatting issues

Whenever hash functions are used for data integrity, it is essential that the input data for the hash
functions is exactly defined, such as padding, representation, field sizes and the use of binary data.

The evolution of so-called 'padding oracle attacks' continues. Such attacks are particularly relevant
to decryption algorithms that reveal whether a possibly tampered ciphertext is correctly
formatted when decrypted. These attacks are especially relevant to PKCS#1v1.5 [113], PKCS#11
[120] and CBC encryption and may be avoided by the detection of such tampering (e.g. by using
authenticated encryption).

https://security.googleblog.com/2018/10/modernizing-transport-security.html

www.epc-cep.eu 44 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

3.4.3 Implementation rules

As soon as different transformations must be applied to the data, the order in which these
transformations are performed may be important. The transformations and their purpose are as
follows:

• Encryption: to protect confidentiality - this may be absolute (such as for cryptographic
keys, not to be seen as plaintext outside an HSM) or for transmission or storage

• Data compression: to reduce message or storage size
• Digital signature or MAC: to give origin authentication (asymmetric cryptography only)

and data integrity - also for use in authentication
• Legal signature (asymmetric digital signature): to achieve the equivalent of a handwritten

signature - which may achieve non-repudiation in the legal sense of providing evidence to
a third party or a court as to intent (also known as electronic signature).

The following rationale should be considered in conjunction with the recommendations given
below:

• Sending encrypted data that is not integrity protected enables attacks on encryption keys
and plaintext through error analysis: it is better to encrypt first and then sign or MAC, so
that the receiver can first verify the integrity of the ciphertext. But note: some signature
algorithms are weaker when signing unintelligible data.

• Signing the data in plain text format is necessary for legal signature, but not for other
purposes.

• Performance of encryption is better if there is less data to encrypt.
• Data compression of encrypted data has no effect.

The following basic principles should be respected:

• Separate keys should be used for each transformation (where relevant).
• Keys should be reserved for specific associated functions, and this association should be

protected. For example, keys used for legal signature might be associated with that
purpose through a public key certificate.

EPC recommendation 10

To achieve confidentiality and integrity protection:

• For the originator, sign the plaintext data first for legal signature (if required), then
compress (if required), then apply authenticated encryption with the non-confidential
data being treated as associated data (not encrypted).

• For the recipient, perform the steps in the reverse order. Verify that signatures are
from an authentic source.

• The encryption and signature/MAC can be performed as separate steps or can be
achieved by use of authenticated encryption (which also allows the use of traditional
encrypt-then-MAC) or signcryption.

3.4.4 Key management impact on interoperability

As long as cryptographic techniques are used within closed user groups, any technically suitable
and sufficiently secure key management scheme may be used.

www.epc-cep.eu 45 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

When cryptographic techniques are used in an open environment, key management issues may
become the major obstacle to interoperability.

It is commonly agreed that public key technology is better suited to open environment than
symmetric algorithm technology. If symmetric algorithms are required and secret keys must be
exchanged then using a mix of public key for key exchanges and secret keys for encryption is a
good solution.

As long as the application concerned may be considered as "low-risk”, use of commercial CA
services may be an acceptable way of solving this interoperability issue. One danger is to use the
root keys of too many commercial CAs simultaneously (such as is the case with current internet
browsers). The security of such a system is as strong as the weakest of the CAs in the list.

3.4.5 Implementation quality and side-channel attacks

A bug in an algorithm implementation can transform a good algorithm into a bad one. Therefore,
quality control during the development process and testing against other implementations of the
same algorithms are crucial.

Implementation of protocols is equally important for the security of the protocol, and needs as
much care as the implementation of the underlying protocols.

For high risk applications usage of evaluation criteria (Common Criteria or FIPS 140-221) and of
formal description languages may be considered.

Any component of a protocol using secret data is a potential target for side-channel attacks (e.g.
timing attacks, glitch attacks, DPA). Generally, side-channel attacks need special equipment – for
example malicious software on POS devices cannot be used for side-channel attacks.

It should be noted that timing attacks can be attempted at long distances, for example [154]
describes timing attacks on SSL implementations performed over the Internet.

3.4.6 Algorithm OIDs

OIDs or Object Identifiers are a mode of identification of objects originally defined in ASN 1 syntax,
which is widely used today. For example, X 509 certificates make a very extensive usage of OIDs.

International standardisation bodies (e.g., ISO, IEC, ITU) have defined a hierarchical way of
assigning OIDs, such that the same OID may not be assigned twice to two different objects.

On the other hand, nothing prevents standards writers or users to define new OIDs for an object,
which has been already given one elsewhere.

So when designing a security protocol, or when creating a certificate request one must consider
which OIDs will be used to identify the algorithms and algorithm parameters.

Choosing the correct OID is not always straight forward and implementers should refer to the
relevant standard for the OID of the algorithm they are implementing.

21 A new version of FIPS 140-3 is currently under development and should be officially published in 2009.

www.epc-cep.eu 46 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

4 Key Management Issues

This section focuses on issues related to key management. Section 4.1 addresses the management
of keys used with symmetric algorithms (i.e. symmetric keys) and Section 4.2 addresses the
management of keys used with asymmetric algorithms (i.e. asymmetric keys).

These Guidelines do not address any particular commercial products for key management. Specific
key management techniques may be imposed by the device being used and in this case the device
vendor’s instructions should be followed.

4.1 Symmetric algorithms

This section describes key management for symmetric algorithms, and in particular block ciphers,
covered by ISO 11568-2 [9] and ISO/IEC 11770-2 [41]. Many systems - especially those providing
general security protection - are implemented using TDES with triple-length (168 bits) keys or the
AES block cipher with 128, 192 or 256-bit keys.

Key management involves the managing and protection of cryptographic keys throughout their
lifecycle – from generation to active use to de-activation and destruction. Such key protection
includes both key confidentiality and key integrity, often with separate "superior" keys providing
various levels of protection. This section of the Guidelines primarily discusses key confidentiality
for symmetric keys, however the requirements for key integrity are similar (e.g. Key MAC’ing Keys
instead of Key Encrypting Keys).

4.1.1 Key generation and derivation

Keys should be generated in a TRSM (Tamper-Resistant Security Module) – as described in
standard FIPS PUB 140-2 [82] and ISO 13491. The TRSM should have a master key that is
generated inside the TRSM and never exists in clear text outside the TRSM.

Figure 2: Example of key hierarchy for symmetric keys

www.epc-cep.eu 47 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Key encrypting keys are also generated in the TRSM but may be exported for backup/storage
encrypted under the master key (or a dedicated recovery key that is encrypted under the master
key). Master key generation is therefore the most sensitive as this key encrypts all other key
encrypting keys.

Access control mechanisms should be implemented that provide Dual Control over the TRSM. This
prevents a single person from generating or accessing the master key on his or her own.

• Access control mechanisms are used to control access to the systems operations.
Typically, the users must log on to the system with a password or a PIN and a smart card
to get access to the operations. In key management, smart cards are often used because
they are more secure than passwords22, and may have many other applications.

• Dual control means that the operation needs (at least) two people. Typically, in the case of
master key generation the first person logs on to the system and generates the first key
component in the TRSM (which in the case of TDES is a full-length 128 bits or 192 bits
component with parity bits). Then the second person logs on to the system and generates
the second key component in the TRSM. The two key components are now combined (e.g.
XOR’ed together) and the result is the new master key. This scheme also supports backup
of a master key whereby each component is securely retained by the person that
generated it so that no single person knows the master key. More complex secret sharing
systems such as Shamir's threshold scheme may be used (described in [141]). When
generating a new master key for a TRSM all keys protected by the old master key must be
decrypted and re-encrypted under the new master key. This is an example of key
translation and specially designed secure functionality must be supported in the TRSM for
this purpose (see the conference paper in "The unbearable lightness of PIN cracking" in
[204]).

For key generation, it is critical that the TRSM use a good random source. Many implementations
of cryptosystems have been broken on account of an inadequate source of randomness or
‘pseudo-randomness’. This topic is discussed in [141] where an extensive bibliography on
randomness may be found.

Key derivation techniques are used when deriving keys from other keys (including card keys
derived from issuer keys, session keys derived from fixed keys and symmetric keys derived during
asymmetric key agreement) and from passwords or other secret data. Techniques for deriving
keys from passwords such as PBKDF2 are standardised in NIST SP 800-132 [134] and PKCS#5 (IETF
RFC 8018) [115]. Other credible techniques include SCRYPT (IETF RFC 7914) [104] and Argon223.

4.1.2 Key backup and storage

Subsidiary symmetric keys (i.e. those other than the master key) can be stored inside the
hardware or encrypted outside. The advantages and disadvantages are comparable. Multiple
copies of encrypted keys may be made in case a single instance is destroyed, but an intact master
key will still be needed to decrypt it within the TRSM.

22 A PIN usually protects usage of smart cards, thus access control based on smart cards requires both possession of the

smart card and knowledge of the PIN.
23 https://password-hashing.net/argon2-specs.pdf

https://password-hashing.net/argon2-specs.pdf

www.epc-cep.eu 48 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

EPC recommendation 11

If a master key needs to be backed-up outside of a TRSM then it should be split into key
components in a secure and resilient manner. Secret sharing techniques should be used to
allow recovery of the master key from all or a fixed number (threshold) of the master key
components. The security level of the storage of the master key components should be
commensurate with the protection afforded to the operational master key itself.

4.1.3 Key distribution

In hybrid crypto systems (ones using both symmetric and asymmetric cryptography) data is
protected using a symmetric key, and the symmetric key is distributed encrypted under the
recipient’s public key. Assuring the authenticity and integrity of this public key is paramount and
techniques addressed in Section 7.2 may be used.

When using only symmetric cryptography, key-encrypting keys (KEKs) must be distributed or a
hierarchic key derivation scheme may be used. KEKs are used to encrypt other keys. After the first
KEK is interchanged between the parties, this KEK can typically be used to encrypt the successor
KEK and so on. The first KEK distribution is then called the initialisation exchange. The security of
this exchange must be very high, this means physical attendance of bank personnel who are
responsible for the security of the system in question. If any of the KEKs is compromised then all
its successor KEKs are assumed compromised. In this case a re-initialisation exchange is needed,
and the old keys must be deleted.

The most difficult part of key distribution is most often the initialisation phase. It may require
manual procedures such as:

• key components in sealed envelopes or smart cards
• face-to-face identification
• key components to be distributed by different channels
• installation of a security module with pre-installed keys.

For other symmetric key distribution schemes refer to ISO/IEC 11770-2 [41] and other references
provided at the beginning of this section.

4.1.4 Key installation

Often symmetric keys are generated in one place and are used somewhere else. This could be two
different machines inside the same organisation or it could be two parties in a communication,
e.g. two payment service providers.

There are several ways to install these keys:

• Key split into key components: the key is split into components that must be combined
(e.g. XOR’ed together) to form the actual key. At the most elementary level the key
components may be securely printed in plaintext on different pieces of paper (key
component letters). A separate trusted person holds each key component letter thereby
providing split knowledge and dual control. This way of installing keys can be used when
installing initial keys, e.g. initial KEK’s between parties with different master keys.

• Smart cards: The key component letter installation method can be done more securely
using smart cards (chip cards) with PIN. Each smart card contains a component of the key.
When installing the key the person holding the card enters the PIN on the smart card
reader and installs the component of the key.

www.epc-cep.eu 49 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

• Encrypted installation: The key which is going to be installed is encrypted by a key-
encrypting key (KEK). The sender’s KEK must already be installed in the TRSM of the
recipient and so no additional dual control is needed. This method is the simplest and
most often used – the use of fragmented keys is only necessary to initialise or reinitialise a
secure communication between parties.

When installing a key, especially if manual methods are used, its integrity should be verified. This
can either be done using a MAC (using a pre-established Key MAC’ing Key) or by a key check value,
which is calculated when the key is generated. This value is distributed with the key and the
receiver of the key makes the same calculation and compares his result with the key check value.
If they are equal the key is valid.

A common way to calculate a key check value for verification is to encrypt a fixed string (e.g. zeros
or a pre-selected number) with the key, and part of this result, typically the first six positions, is
then the key check value. It must be noted that these key verification techniques are intended
only to allow error detection during the key installation process.

4.1.5 Key usage and key separation

To increase the level of security, one key should be dedicated to only one usage. Furthermore, the
keys and their intended usage should be connected in a reliable way (key wrapping). Key usage
information tells the system, what the key can (and cannot) be used for. This is sometimes called
the key control vector (CV). All cryptographic operations other than those specified in the CV will
fail. The control vector method only works if all parties involved use compatible CV’s with the
same certified TRSMs that enforce the key usage policy.

Key wrapping methods using AES and Triple DES are standardised in ISO 20038 [14] and x9 TR31
[81] respectively.

At the time of writing of this report, the PCI SSC has mandates on the use of key wrapping in the
form of "key blocks":

• https://www.pcisecuritystandards.org/documents/Cryptographic_Key_Blocks_Informatio
n_Supplement_June_2017.pdf

• https://www.pcisecuritystandards.org/documents/PIN_Security_Rqmt_18-
3_Key_Blocks_2019.pdf

• https://www.pcisecuritystandards.org/pdfs/PCI_SSC_Bulletin_on_Key_Block_Equivalents_
Final.pdf

Use of TRSMs that make use of control vectors and key wrapping is recommended so that at least
within a system the keys are used only for their intended purposes. See also NIST SP800-38F [127]
[167].

Irrespective of the key wrapping technique used, key separation should be implemented.

EPC recommendation 12

Symmetric keys should be dedicated to one usage (e.g. encryption or MAC computation, but
not both).

EPC recommendation 13

https://www.pcisecuritystandards.org/documents/Cryptographic_Key_Blocks_Information_Supplement_June_2017.pdf
https://www.pcisecuritystandards.org/documents/Cryptographic_Key_Blocks_Information_Supplement_June_2017.pdf
https://www.pcisecuritystandards.org/documents/PIN_Security_Rqmt_18-3_Key_Blocks_2019.pdf?agreement=true&time=1562327968751
https://www.pcisecuritystandards.org/documents/PIN_Security_Rqmt_18-3_Key_Blocks_2019.pdf?agreement=true&time=1562327968751
https://www.pcisecuritystandards.org/pdfs/PCI_SSC_Bulletin_on_Key_Block_Equivalents_Final.pdf
https://www.pcisecuritystandards.org/pdfs/PCI_SSC_Bulletin_on_Key_Block_Equivalents_Final.pdf

www.epc-cep.eu 50 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Key usage controls (e.g., making use of control vectors, key wrapping) which bind the key to
key control information in a secure way should be employed.

4.1.6 Key deletion

Keys should be deleted when they are compromised or expired. Key component letters should be
destroyed after use. Storage media with old keys should be destroyed magnetically. EPROM
should be destroyed physically.

4.1.7 Key cryptoperiod

General principles of key cryptoperiod management should be based on ISO 11568-2 [9] and NIST
SP 800 57 [130].

Whenever possible, session keys should be used. This means that instead of using the same key
for many "sessions", different keys are used for different sessions. These session keys are typically
derived (securely) from a parent key so it is infeasible to determine the parent key from the
derived key. For example, in the case of DUKPT x9.24 [70] each session key is derived from its
predecessor using a 1-way function.

KEKs are less exposed than session keys and consequently their cryptoperiod may be longer. The
precise frequency at which KEKs are changed will vary according to the level of risk – for low risk
applications years may be enough, whilst for higher risk applications changing the KEK after
several hours or days may be needed.

Master keys are even less exposed (but of course are more valuable) and so may be kept for
longer periods (many months or even years depending on the risk exposure and type of
application). In determining the cryptoperiod for master keys, the procedural risks surrounding
over-frequent initialisations should also be considered, against infrequently invoked, perhaps
forgotten, procedures.

4.2 Asymmetric algorithms

This section describes key management for asymmetric algorithms, i.e. public-key cryptography
such as RSA, which is the most commonly used. For other key distribution schemes refer to the
Diffie-Hellman protocol [114], [142], ISO 11568-4 [10] and ISO/IEC 11770-3 [42].

Asymmetric algorithms use key pairs comprising a public key and a private key. A key pair has
several phases in its lifetime:

1. Generation phase. The key pair is generated and waiting to be activated.

2. Usage phase. The private and public keys are used.

3. Verification-only phase. The private key is no longer used (it may be archived or
terminated) but the public key is still used e.g. for verification of issued certificates or digital
signatures. This phase will last as long as the issued certificates or digital signatures are
valid. This phase doesn’t apply for key pairs used for data or key encryption.

4. Decryption-only phase. The public key is no longer used (for example because the public
key’s certificate has expired) but the private key may still be used for decrypting previously
encrypted data or keys. This phase will last as long as the scheme requires. This phase
doesn’t apply for key pairs used for digital signatures.

www.epc-cep.eu 51 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

5. Archival phase. The private key and/or the public key are archived from normal operational
use. This phase could be omitted.

6. Termination phase. The private key is deleted, the public key certificates are revoked if not
already expired.

4.2.1 Key generation

Keys should be generated in a dedicated hardware security device.

The hardware should contain a TRSM (Tamper-Resistant Security Module) – described in standard
FIPS PUB 140-2 [82], or in ISO 13491 [11]. The keys should be generated inside the TRSM and the
private key should never exist in clear text outside the TRSM.

EPC recommendation 14

Keys should be generated inside the TRSM and the private key should never exist in clear
text outside the TRSM.

As with the generation of symmetric keys, it is critical to use a good random number generator.
Refer to section 5 for information on random number generation.

The generation of asymmetric keys will often imply usage of prime numbers and
recommendations may be found to use ’strong’ primes. Strong primes are prime numbers
generated to have a particular structure that makes them more impervious to particular
cryptanalytic attacks. Nowadays it is less necessary to explicitly require that prime numbers be
strong, this is for two reasons: because all randomly generated primes of the size used in modern
cryptographic systems will be strong with overwhelming probability anyway and, to a lesser
extent, because new attacks such as elliptic curve factorisation are 'immune' to weak primes.

Algorithms used for generating primes for RSA should have been publicly scrutinized (see
Recommendation 1) and should not be susceptible to Coppersmith’s attack24 (see for example the
security flaw in the Estonian ID card25 [194]). ISO/IEC 18032 [56] specifies algorithms for
generating primes numbers that can be used for creating RSA moduli.

4.2.2 Example of a hybrid key architecture

Private and public keys may be deployed within a fixed hybrid key hierarchy, for instance with the
following keys, as shown in Figure 3:

• Master key: stored inside TRSM. Typically, a symmetric key – e.g. double- or triple length
DES key or AES key.

• Key-encrypting key (KEK) – optional. Typically, a symmetric key – e.g. double- or triple
length DES key or AES key. Encrypted by the master key.

• Private key: e.g. 2048-bit RSA key – with corresponding public key. The private keys are
encrypted by the master key or a key-encrypting key when outside the TRSM.

• Public key (corresponding to a private key) authenticity may be protected with a
certificate created by a Certification Authority signature. Certificate Management and
Certification Authorities are complex subjects warranting separate discussion which is
outside the scope of this document (for more information see [4] and [15]).

24 see for example https://crocs.fi.muni.cz/public/papers/rsa_ccs17
25 https://www.schneier.com/blog/archives/2017/09/security_flaw_i.html

https://urldefense.proofpoint.com/v2/url?u=https-3A__crocs.fi.muni.cz_public_papers_rsa-5Fccs17&d=DwMFaQ&c=uc5ZRXl8dGLM1RMQwf7xTCjRqXF0jmCF6SP0bDlmMmY&r=kaURLuBBPEcdm1Ua2G_chuMqhXHK01GMJujdjTVnGfk&m=WnvuGKKf0z0j70hdQVddFMnqZgSdOkcJi_wbMtXaNVs&s=KWg3YH3ENjleqcoOtLvbvqE_mhVuy03jQWeU4LwKTj4&e=
https://www.schneier.com/blog/archives/2017/09/security_flaw_i.html

www.epc-cep.eu 52 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

• Session key: key used in a protocol between nodes in a network. Typically, a symmetric
key (e.g., single or double-length DES key or AES key). The session key is randomly
generated and encrypted with the correspondent parties public key.

Figure 3: A hybrid key hierarchy with asymmetric and symmetric keys (for data confidentiality)

4.2.3 Key backup and storage

Public keys may be stored in plaintext in certificates outside the cryptographic hardware. Private
keys can be stored in various ways, for example:

• Inside one piece of cryptographic hardware in plaintext (or even encrypted under a
Master key).

• Outside but encrypted by e.g. a TDES or AES key (KEK). This KEK key must be stored inside
the hardware or stored outside encrypted under the master key or another KEK. When a
private key is needed it is taken into the cryptographic hardware and decrypted by the
KEK inside the TRSM.

• Inside many pieces of hardware but in plaintext fragments (or even encrypted under a
Master key) - securely and resiliently fragmented in such a way as to require co-operation
of a threshold number of fragments in order to operate the private key.

The first two ways both have a very high level of security. The advantage of the first one is
performance, but there is no backup of the keys. The second one has an easy way to make backup
and the scalability is better, because only one key is needed inside the cryptographic hardware.
The disadvantage is that the security of the KEK must be very high, a compromise of this key
would lead to disclosure of all other keys and destruction of this key (and any backups it may
have) would effectively destroy the private key that it protects.

The third approach is described as ISO 15782-1 [4] can provide the resilience of the second
approach with the security of the first, however the fragments must be managed carefully. This
approach can be modified to provide a secure procedure for back up (as opposed to operational
storage) of private keys. With this modification a backup copy of the private key is fragmented

www.epc-cep.eu 53 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

using techniques similar to those used for symmetric keys – a threshold number of key fragments
are needed to reconstitute the key (and only then can the reconstituted key be operated).

4.2.4 Key distribution

The private key usually remains on the hardware that generated the key pair or within a secure
storage environment (e.g. smart cards). However, the public key must be distributed to the parties
that are intended to communicate.

Distribution of the public key is a very important security issue. The recipient of the public key
must be absolutely sure of the authenticity and integrity of the delivered public key, i.e. she must
be sure that the key belongs to the declared owner of the key and that the key has not been
modified after its creation. If for example, the original public key is replaced with a public key from
a malicious person or organisation, then the recipient will be misled to accept false signatures on
transactions, or send data encrypted with the false public key, which can be decrypted by the
malicious entity. So, the risk of public key substitution during its distribution requires the
deployment of appropriate security controls.

There are various methods to distribute or validate public keys. For example:

• Electronically (e.g. download from a web site).
• Delivered on a physical storage medium.
• Public key in a certificate.

In the first method, the integrity and authenticity of the distribution channel has to be ensured
e.g. through the use of Transport Layer Security v1.2 or higher ([102], [108]) or by a multiplicity of
controls (e.g. key hashes/checksums published on a website or sending key hash information over
a different channel than the one used to distribute the public key). The disadvantage of the
second “physical” method is that the key has to be delivered in person, which is almost always
impractical in large user communities, or by registered post where the recipient must be sure that
the key is delivered in an untampered envelope. Neither of these methods preserves the integrity
of the public key after installation on the recipient’s device unless a hash or a MAC is applied.
Where the operation of a Certification Authority (CA) is practical and appropriate the use of public
key certificates to distribute public keys is recommended.

EPC recommendation 15

Where appropriate, public keys are to be distributed in a manner that preserves their
integrity and the binding with the legitimate key owner (e.g. by using public key
certificates).

The widely used standard format for certificates is the X.509 [22].

EPC recommendation 16

Usage of X 509, version 3, format certificates is recommended.

Some other techniques related to public key authenticity and certificates are:

• CRL (Certificate Revocation Lists) and OCSP (Online Certificate Status Protocol) – see
section 4.2.7.

• Certificate Pinning (see [205])

• OCSP stapling (https://en.wikipedia.org/wiki/OCSP_stapling)

https://en.wikipedia.org/wiki/OCSP_stapling

www.epc-cep.eu 54 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

• Certificate transparency (https://en.wikipedia.org/wiki/Certificate_Transparency)

Often there is confusion between public key certificate and attribute certificates. A public key
certificate binds the identity of a person or an organisation to a specific public key. In an attribute
certificate different privileges of a particular user are bound to the identity of the user or the serial
number of their public key certificate. The lifetime of an attribute certificate is foreseen to be
shorter than the lifetime of a public key certificate.

4.2.5 Key agreement and forward secrecy

If the requirement is to establish a shared secret key (which might then be used for sending keys
or messages from one party to another protected using symmetric techniques) then it is important
to consider Diffie-Hellman key agreement and its EC-based variant ECDH (see ISO/IEC 11770-3
[42]) in conjunction with key derivation techniques (see ISO/IEC 11770-6 [45] and NIST SP800-56c
[129]). If ephemeral or randomised EC keys are used in the Diffie-Hellman key agreement then it is
possible to achieve forward secrecy whereby an attacker (who subsequently compromises the
sender’s or recipient’s key store) is unable to determine the shared secret key that was
established and the payload it protected. This property is enforced by TLS v1.3 (see [108]) and
IPsec.

4.2.6 Public Key installation

Before an installation of a public key can take place, the validity of the public key and related
parameters must be verified. This is done either as part of the distribution process or, if
certificates are used, by using the public key of the CA which issued the certificate. The process of
verifying certificates in a chain back to the trusted root public key is called validating the
certification path.

4.2.7 Certificate revocation and expiry

If a private key is compromised then the associated public key certificate must be revoked. The CA
must keep updated information about certificate revocations. When verifying a certificate, users
must have access to the most recent information about the certificate status. This may be
provided by the CA distributing regularly Certificate Revocation Lists (CRL) or giving interactive
access to a certificate status database through an on-line protocol (OCSP).

A key pair and the related certificate have a lifetime that must be indicated in the certificate by a
validity period. As soon as this validity period expires the public key must not be used any longer.
Copies of expired certificates must be kept as long as there may be a need to verify signatures
generated by the corresponding private key (the use of a trusted archive or time stamping
techniques may be needed in this case – see ISO/IEC 18014 [51]).

When validating a certification path, it should be checked that no certificate of the path is present
in a Certificate Revocation List (CRL), nor expired.

EPC recommendation 17

When verifying a digital signature, users should check that the certificate status (either valid,
expired or revoked) when the signature was generated does not make it invalid. When a
certification path is involved, this verification should be performed for every certificate of the
path up to the root certificate. Efficient verification may require that the date and time when
the signature was produced is unambiguously defined.

https://en.wikipedia.org/wiki/Certificate_Transparency

www.epc-cep.eu 55 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

If certificates are not distributed along with the signed message, then users should either have
online access to up-to-date certificates or they should keep track of certificates in local databases
and update the database when new certificates are issued.

A timestamp may be included in the signed message so that the signer can attest to the time the
signature was created. An agreed time source may be enough for some implementations,
however there are also certified time sources available, i.e. Time Stamping and Notary Services,
which are being supplied by trusted third parties. Trusted timestamps allow the user to be sure of
when the message was signed (in case they do not trust the signing entity for such things).

Similarly, a user must have access to a trusted time source when verifying signatures and
certificates containing dates and times.

EPC recommendation 18

Whenever possible, trusted time sources should be used, in order to allow reliable verification
of certificate validity.

4.2.8 Key usage and key separation

Public and private keys have different usage. For example:

Public key usage:

• key and data encryption,
• digital signature verification.

Private key usage:

• key and data decryption,
• digital signature creation,
• certificate signing for issuing certificates,
• CRL (Certificate Revocation List) signing.

Furthermore, an entity with a private key can authenticate itself to an entity that has the
corresponding public key, and key pairs can also be used for establishing shared secret keys.

It is good security practice to have separate key pairs for different purposes, e.g. a separate key
pair reserved for signing and another for encryption. In that way key recovery can more easily be
implemented, as the private encryption key can be stored at a trusted place apart from the private
signing key. Another advantage of key separation is that a large key is often required for signing,
whereas shorter keys may be sufficient for short-term encryption, and different certification
policies may apply to encryption and signature keys. X 509 certificates [22] contain an extension
which indicates the purposes for which the certified public key is used.

EPC recommendation 19

An asymmetric key pair should be dedicated to one usage, for instance: one of entity
authentication, data integrity, symmetric keys’ encryption.

4.2.9 Key deletion and archiving

If a private key is suspected of being compromised the private key should no longer be used by the
owner. Then the owner should delete any copy of it and request the prescribed entity (e.g., the
CA) to revoke the relevant certificate. However, it may be necessary to archive the certificate as
long as verification of signatures produced with the private key may be required.

www.epc-cep.eu 56 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

4.2.10 Key crypto period

The crypto period of an asymmetric key pair is related to the size of the key and therefore to its
cryptographic strength. A typical crypto period for RSA key pair will be measured in years.
Considerations on key length and crypto period may be found in [9], [97], [140], [148], [149] and
[151].

4.3 Key recovery and key escrow

Sections 4.1.2 and 4.2.3 noted the importance of key backup to handle the situation where an
operational key is accidentally destroyed or becomes unusable, for example in case of a natural
disaster. This is referred to as key recovery.

An organisation may also need to make copies of secret keys available to law enforcement so as to
meet national requirements on lawful access to data (see [131] and [1]). In such cases the keys
should only be made available to appropriately authorised entities and with active participation of
the organisation. This is referred to as key escrow.

EPC recommendation 20

Where possible, payment service providers should avoid the use of key escrow, but key
recovery is part of their due diligence and business continuity obligations.

4.4 Additional information

More information on this topic may be found, for instance in: HAC [141], ISO 11568-1 [8], ISO/IEC
11770-1 [40] , ISO/IEC 9594-8 [22], Davies and Price [139].

Regarding asymmetric algorithms:

• On Certification Authorities and public key certificate management, the reader is referred to
ISO 15782 [4] and ISO 21188 [15].

• Some PKCS specifications cover certificate management: certificate format in PKCS #7
[117] and certificate requests in PKCS #10 [119].

www.epc-cep.eu 57 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

5 Random Numbers

The production of high-quality random numbers is critical for cryptographic applications, and
indeed some implementations of cryptosystems have been broken on account of an inadequate
source of randomness or "pseudo-randomness". An adequate source of randomness makes sure
the generated numbers are not predictable.

The importance of good random number generation has received wide attention, especially in the
area of prime selection for RSA key generation (see 4.2.1) where some internet research (see
[174]) has revealed that a significant proportion (e.g. thousands) of TLS/PGP public keys shared
common factors (and so could be broken). The cause of this is bad RSA key generation probably
resulting from the use of bad random number generators or poorly seeded random number
generators.

Random numbers can be generated using true hardware RNGs or using deterministic algorithmic
methods, preferably both. If a deterministic random number generator is used, it must be seeded
with an unpredictable source of information. Recommendations and requirements for generating
random numbers can be found in the following standards:

• ISO/IEC 18031: Information Technology – Security Techniques – Random bit generation
[55]

• ANSI X9.82: Financial Services – Random Number Generation [78]
Part 1: Overview

Part 2: Entropy Sources

Part 3: Deterministic Random Bit Generators

Part 4: Random Bit Generator Construction

• NIST SP 800-90A, Recommendation for Random Number Generation Using Deterministic
Random Bit Generators [132]

• NIST SP 800-22, A Statistical Test Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications [124]

Most modern mainstream crypto libraries now include satisfactory functions for random number
generation, however caution is recommended with older libraries. Examples of random number
generators are recent versions of the following environments:

Programming environment Random number source

Unix /dev/urandom

Java java.security.SecureRandom

.net System.Security.Cryptography.RandomNumberGenerator

Python secrets.randbits

C libsodium (third-party library)

See the respective environments’ documentation for details on how to use these crypto random
generators.

Some applications require random numbers or random bit strings in order to ensure freshness of a
cryptogram (e.g. in a challenge-response protocol) or to protect the private key in an elliptic curve
signing process. A standard approach for a device to derive such random values is to use a one-

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf

www.epc-cep.eu 58 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

way function of an internal device state (at least 100 bits) where the internal device state is
updated as a one-way function of a secret seed (at least 100 bits), time-varying data (e.g. a
counter) and hardware entropy (if available).

Note that due to concerns regarding the security of the Dual Elliptic Curve Deterministic Random
Bit Generator (Dual_EC_DRBG) this method has been officially withdrawn from both NIST [132]
and ISO 18031 [55] standards. Users of this random generator are recommended to switch to one
of the other random number generators in these standards.

When using simpler hardware configurations, particularly without a decent built-in source of
random generation, it can be challenging to achieve a high-quality production of random numbers.
This particularly applies for Internet of Things (IoT) devices where the entropy can be very limited
based on often-used sources of randomness, such as CPU cycles or a clock. In addition, fixed seeds
across identical devices will contribute to poorer random number generation. Some alleviation to
this challenge can be given by also considering other sources of randomness, such as timing of
network packet reception or input from attached sensors.

www.epc-cep.eu 59 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

6 ANNEX I: Terminology

Definitions

Whenever a definition is copied without alteration from an International Standard, the reference
of the standard is given.

Asymmetric algorithm: A cryptographic algorithm employing a public key and a private key.
Together these form an asymmetric key set.

Block cipher: A cryptographic algorithm, which maps n-bit plaintext blocks to n-bit ciphertext
blocks. “n” is called the block length or block size (both terms are used here).

Confidentiality: The property that information is not made available or disclosed to unauthorised
individuals, entities or processes. (ISO 7498-2 [1])

Cryptography: The discipline, which embodies principles, means, and methods for the
transformation of data in order to hide its information content, prevent its undetected
modification and/or prevent its unauthorised use. (ISO 7498-2 [1])

Cryptoperiod: See key cryptoperiod.

Data integrity: The property that data has not been altered or destroyed in an unauthorised
manner. (ISO 7498-2 [1])

Data origin authentication: The corroboration that the source of data received is as claimed. (ISO
7498-2 [1])

Decipherment: The reversal of a corresponding reversible encipherment. (ISO 7498-2 [1])

Decryption: See decipherment. (ISO 7498-2 [1])

Digital signature: Data appended to, or a cryptographic transformation (see cryptography) of, a
data unit that allows a recipient of the data unit to prove the source and integrity of the data unit
and protect against forgery e.g. by the recipient. (ISO 7498-2 [1])

Encipherment: The cryptographic transformation of data (see cryptography) to produce
ciphertext. (ISO 7498-2 [1])

Encryption: See encipherment. (ISO 7498-2 [1])

Hash function: A (mathematical) function, which maps values from a large (possibly very large)
domain into a smaller range. A 'good' hash function is such that the results of applying the
function to a (large) set of values in the domain will be evenly distributed (and apparently at
random) over the range. (ISO 9594-8 [22])

Key: A sequence of symbols that controls the operations of encipherment and decipherment. (ISO
7498-2 [1])

Key cryptoperiod: The time period over which a key is valid for use by legitimate parties.

Key encapsulation: a class of encryption techniques designed to secure symmetric cryptographic
key material for transmission using asymmetric (public-key) algorithms.

Key establishment: A process whereby a shared secret key becomes available to two or more
parties, for subsequent cryptographic use.

Message Authentication Code: A data item derived from a message using cryptographic
techniques to provide message integrity and authenticity.

http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Symmetric_cryptography
http://en.wikipedia.org/wiki/Cryptographic_key
http://en.wikipedia.org/wiki/Cryptographic_key
http://en.wikipedia.org/wiki/Asymmetric_cryptography

www.epc-cep.eu 60 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Modification Detection Code: A data item derived from a message using an unkeyed hash
function to provide message integrity.

Private key: (In a public key cryptosystem) that key of a user's key pair which is known only by that
user. (ISO 9594-8 [22])

Public key: (In a public key cryptosystem) that key of a user's key pair which is publicly known. (ISO
9594-8 [22])

Repudiation: Denial by one of the entities involved in a communication of having participated in
all or part of the communication. (ISO 7498-2 [1])

Secret key: A key used with symmetric cryptographic techniques and usable only by a set of
specified entities. (ISO/IEC 11770-1 [40])

Signcryption: A public-key primitive that simultaneously performs the functions of both digital
signature and encryption.

Stream cipher: A symmetric encryption system with the property that the encryption algorithm
involves combining a sequence of plaintext symbols with a sequence of keystream symbols one
symbol at a time, using an invertible function (ISO/IEC 18033-1 [57]).

Symmetric algorithm: A cryptographic algorithm employing the same value of key for both
enciphering and deciphering or for both authentication and validation.

Unkeyed: A cryptographic algorithm that only uses a message as parameter, in other words, no
cryptographic key is involved.

Abbreviations

2TDES Two-key Triple DES

3TDES Three-key Triple DES

AES Advanced Encryption Standard

ANSI American National Standards Institute

ATM Automated Teller Machine

CA Certification Authority

CBC Cipher Block Chaining

CFB Cipher Feedback

CRL Certificate Revocation List

CRT Chinese Remainder Theorem

CV Control Vector

DEA Data Encryption Algorithm

DES Data Encryption Standard

DH Diffie-Hellman

DLT Distributed Ledger Technology

DSA Digital Signature Algorithm

DSS Digital Signature Standard

www.epc-cep.eu 61 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

DUKPT Derived Unique Key Per Transaction

ECB Electronic Code Book

ECBS European Committee for Banking Standards

ECC Elliptic Curve Cryptosystem

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

EESSI European Electronic Signature Standardisation Initiative

EMV Europay MasterCard Visa

EPC European Payments Council

EtM Encrypt then MAC

ETSI European Telecommunication Standards Institute

FIPS Federal Information Processing Standards

GCM Galois/Counter Mode

HMAC Keyed-Hash Message Authentication Code

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

IFES Integer Factorization Encryption Scheme

ISO International Organisation for Standardisation

ITSEC Information Technology Security Evaluation Criteria

IV Initialisation Vector

KDF Key Derivation Function

KEK Key Encrypting Key

MAC Message Authentication Code

MDC Modification Detection Code

MDn Message Digest n

MQV Menezes Qu Vanstone

NESSIE New European Schemes for Signatures, Integrity, and Encryption

NIST National Institute of Standards and Technology

OAEP Optimal Asymmetric Encryption Padding

OCB Offset Codebook Mode

OCSP On-line Certificate Status Protocol

OFB Output Feedback

www.epc-cep.eu 62 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

PGP Pretty Good Privacy

PIN Personal Identification Number

PKCS Public Key Cryptography Standards

PKIX Internet X.509 Public Key Infrastructure

PQC Post Quantum Cryptography

PSS Probabilistic Signature Scheme

PSSG Payment Security Support Group

RFC Request For Comments

RIPEMD RACE Integrity Primitives Evaluation Message Digest

RSA Rivest Shamir Adleman

SET Secure Electronic Transaction

SHA Secure Hash Algorithm

SSL Secure Sockets Layer

TC Technical Committee

TDES Triple Data Encryption Standard

TLS Transport Layer Security

TRSM Tamper-Resistant Security Module

TTP Trusted Third Party

XML Extensible Markup Language

Table 6: Abbreviations

www.epc-cep.eu 63 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

7 ANNEX II: Bibliography

ISO Standards

ISO standards are available from ISO at http://www.iso.org, or from the National Standardisation
bodies (such as AFNOR, BSI, DIN,...).

[1] ISO 7498-2, "Information processing systems - Open Systems Interconnection - Basic
reference model - Part 2: Security architecture" (equivalent to ITU-T Rec X 800)

Technical Committee TC 68 Financial Services, Sub-Committee SC2 Security

[2] ISO 9564-2, " Banking and related financial services - Personal Identification Number
management and security - Part 2: Approved algorithms for PIN encipherment"

[3] ISO TR 14742, "Banking and related financial services - Recommendations on cryptographic
algorithms and their use"

[4] ISO 15782-1, "Certificate management for financial services - Part 1: Public key certificates"
[5] ISO 15782-2, "Banking - Certificate management - Part 2: Certificate extensions"
[6] ISO 16609, "Banking – Requirements for message authentication using symmetric

techniques"
[7] ISO TR 19038 "Banking and related financial services - Triple DEA — Modes of Operation —

Implementation Guidelines"
[8] ISO 11568-1, "Banking - Key management (retail) - Part 1: Principles"
[9] ISO 11568-2, "Banking - Key management (retail) - Part 2: Symmetric ciphers, their key

management and life cycle"
[10] ISO 11568-4, "Banking - Key management (retail) - Part 4: Asymmetric cryptosystems – Key

management and life cycle"
[11] ISO 13491-1, "Banking and related financial services - Secure cryptographic devices (retail) -

Part 1: Concepts, requirements and evaluation methods"
[12] ISO 13491-2, "Banking and related financial services - Secure cryptographic devices (retail) -

Part 2: Security compliance checklists for devices used in financial transactions"
[13] ISO 13492, "Banking and related financial services - Key management related data element

- Application and usage of ISO 8583 data elements 53 and 96 "
[14] ISO 20038, " Banking and related financial services – Key wrap using AES".
[15] ISO 21188, "Public key infrastructure for financial services -- Practices and policy

framework"
Joint Technical Committee ISO/IEC JTC 1 Information Technology

[16] ISO/IEC 10181-1, "Information technology - Open Systems Interconnection - Security
frameworks for open systems - Part 1: Overview" (equivalent to ITU-T Rec X 810)

[17] ISO/IEC 10181-2, "Information technology - Open Systems Interconnection - Security
frameworks for open systems - Part 2: Authentication framework" (equivalent to ITU-T Rec
X 811)

[18] ISO/IEC 10181-3, "Information technology - Open Systems Interconnection - Security
frameworks for open systems - Part 3: Access control framework"

[19] ISO/IEC 10181-4, "Information technology - Open Systems Interconnection - Security
frameworks for open systems - Part 4: Non-repudiation framework"

http://www.iso.org/

www.epc-cep.eu 64 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

[20] ISO/IEC 10181-5, "Information technology - Open Systems Interconnection - Security
frameworks for open systems - Part 5: Confidentiality framework"

[21] ISO/IEC 10181-6, "Information technology - Open Systems Interconnection - Security
frameworks for open systems - Part 6: Integrity framework"

Joint Technical Committee ISO/IEC JTC 1 Information Technology, Sub-Committee SC 6,
Telecommunications and information exchange between systems

[22] ISO/IEC 9594-8, "Information technology - Open Systems Interconnection - The Directory:
Public-key and attribute certificate frameworks" (equivalent to ITU-T Recommendation X
509)

Joint Technical Committee ISO/IEC JTC 1 Information Technology, Sub-Committee SC 27, IT
Security Techniques

[23] ISO/IEC 10116, "Information processing - Modes of operation for an n-bit block cipher
algorithm"

[24] ISO/IEC 9796-1, "Information technology - Security techniques - Digital signature schemes
giving message recovery - Part 1: Mechanisms using redundancy", replaced by 14888

[25] ISO/IEC 9796-2, "Information technology - Security techniques - Digital signature scheme
giving message recovery - Part 2: Integer factorisation based mechanisms"

[26] ISO/IEC 9796-3, "Information technology -- Security techniques -- Digital signature schemes
giving message recovery -- Part 3: Discrete logarithm based mechanisms"

[27] ISO/IEC 9797-1, "Information technology - Security techniques – Message Authentication
Codes (MACs) Part 1: Mechanisms using a block cipher”

[28] ISO/IEC 9797-2, "Information technology - Security techniques – Message Authentication
Codes (MACs), Part 2: Mechanisms using a dedicated hash function”

[29] ISO/IEC 9797-3, "Information technology - Security techniques – Message Authentication
Codes (MACs), Part 3: Mechanisms using a universal hash function”

[30] ISO/IEC 9798-1 "Information technology -- Security techniques -- Entity authentication Part
1: General"

[31] ISO/IEC 9798-2 "Information technology -- Security techniques -- Entity authentication Part
2: Mechanisms using symmetric encipherment algorithms"

[32] ISO/IEC 9798-3 "Information technology -- Security techniques -- Entity authentication Part
3: Mechanisms using digital signature techniques",

[33] ISO/IEC 9798-4 "Information technology -- Security techniques -- Entity authentication Part
4: Mechanisms using a cryptographic check function"

[34] ISO/IEC 9798-5 "Information technology -- Security techniques -- Entity authentication Part
5: Mechanisms using zero knowledge techniques"

[35] ISO/IEC 9798-6 "Information technology -- Security techniques -- Entity authentication Part
6: Mechanisms using manual data transfer"

[36] ISO/IEC 10118-1, "Information technology - Security techniques – Hash-functions - Part 1:
General"

[37] ISO/IEC 10118-2, "Information technology - Security techniques – Hash-functions - Part 2:
Hash functions using an n-bit block cipher algorithm"

[38] ISO/IEC 10118-3, "Information technology - Security techniques - Hash-functions - Part 3:
Dedicated hash-functions"

www.epc-cep.eu 65 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

[39] ISO/IEC 10118-4, "Information technology - Security techniques - Hash-functions - Part 4:
Hash-functions using modular arithmetic"

[40] ISO/IEC 11770-1, "Information technology - Security techniques - Key management - Part 1:
Framework"

[41] ISO/IEC 11770-2, "Information technology - Security techniques - Key management - Part 2:
Mechanisms using symmetric techniques"

[42] ISO/IEC 11770-3, "Information technology - Security techniques - Key management - Part 3:
Mechanisms using asymmetric techniques"

[43] ISO/IEC 11770-4, "Information technology - Security techniques - Key management - Part 4:
Mechanisms based on weak secrets"

[44] ISO/IEC 11770-5, "Information technology - Security techniques - Key management - Part 5:
Group key management"

[45] ISO/IEC 11770-6, "Information technology - Security techniques - Key management - Part 6:
Key derivation”

[46] ISO/IEC 14888-1, "Information technology - Security techniques - Digital signatures with
appendix - Part 1: General"

[47] ISO/IEC 14888-2, "Information technology - Security techniques - Digital signatures with
appendix - Part 2: Integer factorisation based mechanisms"

[48] ISO/IEC 14888-3, "Information technology - Security techniques - Digital signatures with
appendix - Part 3: Discrete logarithm based mechanisms"

[49] ISO/IEC 15946-1, "Information technology - Security techniques - Cryptographic techniques
based on elliptic curves - Part 1: General"

[50] ISO/IEC 15946-5, "Information technology - Security techniques - Cryptographic techniques
based on elliptic curves - Part 5: Elliptic curve generation"

[51] ISO/IEC 18014-1, "Information technology - Security techniques – Time-stamping services -
Part 1: Framework"

[52] ISO/IEC 18014-2, "Information technology - Security techniques – Time-stamping services -
Part 2: Mechanisms producing independent tokens"

[53] ISO/IEC 18014-3, "Information technology - Security techniques – Time-stamping services -
Part 3: Mechanisms producing linked tokens"

[54] ISO/IEC 18014-4, "Information technology - Security techniques – Time-stamping services -
Part 4: Traceability of time sources"

[55] ISO/IEC 18031, "Information technology - Security techniques - Random bit generation"
[56] ISO/IEC 18032, "Information technology - Security techniques - Prime number generation"
[57] ISO/IEC 18033-1, "Information technology - Security techniques - Encryption algorithms -

Part 1: General"
[58] ISO/IEC 18033-2, "Information technology - Security techniques - Encryption algorithms -

Part 2: Asymmetric ciphers"
[59] ISO/IEC 18033-3, "Information technology - Security techniques - Encryption algorithms -

Part 3: Block ciphers"
[60] ISO/IEC 18033-4, "Information technology - Security techniques - Encryption algorithms -

Part 4: Stream ciphers"
[61] ISO/IEC 18033-5, "Information technology - Security techniques - Encryption algorithms -

Part 5: Identity-based ciphers"

www.epc-cep.eu 66 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

[62] ISO/IEC 19772, "Information technology - Security techniques - Authenticated encryption"
[63] ISO/IEC 29150, Information technology - Security techniques - Signcryption"
ETSI Standards

ETSI standards available from http://www.etsi.org

[64] ETSI TS 101 733, "Electronic Signatures and Infrastructures (ESI); CMS Advanced Electronic
Signatures (CAdES)"

[65] ETSI TS 101 903, "XML Advanced Signatures (XAdES)"
[66] ETSI TR 102 176-1, "Electronic Signatures and Infrastructures (ESI); Algorithms and

Parameters for Secure Electronic Signatures – Part 1: Hash functions and asymmetric
algorithms"

[67] ETSI TR 102 176-2, "Electronic Signatures and Infrastructures (ESI); Algorithms and
Parameters for Secure Electronic Signatures – Part 2: Secure channel protocols and
algorithms for signature creation devices"

[68] ETSI TS 119 312, "Electronic Signatures and Infrastructures (ESI); Cryptographic suites"
ANSI Standards

ANSI standards are available from: http://ansi.org

ANSI X 9 standards are available from: http://www.x9.org

[69] ANSI X3.106, "American National Standard for Information Systems- Data Encryption
Algorithm - Modes of Operation", 1983

[70] ANSI X9.24-1, "American National Standard - Financial Industry Standards – Retail Financial
Services Symmetric Key Management - Part 1: Using Symmetric Techniques"

[71] ANSI X9.24-2, "American National Standard - Financial Industry Standards – Retail Financial
Services Symmetric Key Management - Part 2: Using Asymmetric Techniques for the
Distribution of Symmetric Keys"

[72] ANSI X9.31, "American National Standard - Financial Industry Standards - Public Key
Cryptography Using Reversible Algorithms for the Financial Services Industry”

[73] ANSI X9.42, "American National Standard - Financial Industry Standards - Public Key
Cryptography for the Financial Services Industry: Agreement of symmetric keys using
Discrete Logarithm Cryptography"

[74] ANSI X9.44, "Key Establishment Using Integer Factorization Cryptography"
[75] ANSI X9.62, "American National Standard - Financial Industry Standards - Public Key

Cryptography For The Financial Services Industry - The Elliptic Curve Digital Signature
Algorithm (ECDSA)"

[76] ANSI X9.63, "American National Standard - Financial Industry Standards - Public Key
Cryptography For The Financial Services Industry – Key Agreement and Key Transport Using
Elliptic Curve Cryptography"

[77] ANSI X9.80, "American National Standard - Financial Industry Standards - Prime Number
Generation Primality Testing, and Primality Certificates"

[78] ANSI X9.82-1, "Random Number Generation, Part 1: Overview and Basic Principles"
[79] ANSI X9.102, "Symmetric Key Cryptography For the Financial Services Industry - Wrapping

of Keys and Associated Data"
[80] ASC X9, “Study Group Report Distributed Ledger and Blockchain Technology Study Group”,

April 2018.

http://ansi.org/

www.epc-cep.eu 67 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

[81] ASC X9 TR 31, "Interoperable Secure Key Exchange Key Block Specification", April 2018.
NIST FIPS standards

All FIPS standards are available at: http://www.itl.nist.gov/fipspubs/

[82] FIPS 140-2, "Security requirements for cryptographic modules", Federal Information
Processing Standards Publication, US National Institute of Standards and Technology
(supersedes FIPS PUB 140-1).

[83] FIPS 180-4, "Secure Hash Standard (SHS)", Federal Information Processing Standards
Publication, US National Institute of Standards and Technology.

[84] FIPS 186-4, "Digital signature standard", Federal Information Processing Standards
Publication, US National Institute of Standards and Technology.

[85] FIPS 197, "Advanced Encryption Standard (AES)", Federal Information Processing Standards
Publication, US National Institute of Standards and Technology.

[86] FIPS 198-1, "The Keyed-hash Message Authentication Code (HMAC)", Federal Information
Processing Standards Publication, US National Institute of Standards and Technology.

[87] FIPS 202, "SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions",
Federal Information Processing Standards Publication, US National Institute of Standards
and Technology.

Internet drafts, "standards" and RFCs

Internet standards and RFCs are available from: http://www.ietf.org.

[88] RFC 1421, "Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption
and Authentication Procedures", Internet Request for Comments 1421; J. Linn.

[89] RFC 1422, "Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key
Management", Internet Request for Comments 1422; S. Kent.

[90] RFC 1423, "Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes,
and Identifiers", Internet Request for Comments 1423; D. Balenson.

[91] RFC 1424, "Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification and
Related Services", Internet Request for Comments 1424; B. Kaliski.

[92] RFC 1847 "Security Multiparts for MIME: Multipart/Signed and Multipart/Encrypted",
Internet Request for Comments 1847; J. Galvin, S. Murphy, S. Crocker and N. Freed.

[93] RFC 2104 "HMAC: keyed-hashing for Message Authentication", Internet Request for
Comments 2104; H. Krawczyk, M. Bellare, and R. Canetti, updated by RFC 6151.

[94] RFC 3279 "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", Internet Request for Comments
3279; L. Bassham, W. Polk, R. Housley, + updates (see web site).

[95] RFC 3370 "Cryptographic Message Syntax (CMS) Algorithms", Internet Request for
Comments 3370; R. Housley, + updates (see web site).

[96] RFC 3447 "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", Internet Request for Comments 3447; J. Jonsson, B. Kaliski.

[97] RFC 3766 "Determining Strengths For Public Keys Used For Exchanging Symmetric Keys",
Internet Request for Comments 3766; H. Orman, P. Hoffman.

[98] RFC 3874 "A 224-bit One-way Hash Function: SHA-224", Internet Request for Comments
3874; R. Housley.

http://www.ietf.org/

www.epc-cep.eu 68 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

[99] RFC 4055 "Additional Algorithms and Identifiers for RSA Cryptography for use in the
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile", Internet Request for Comments 4055; J. Schaad, B. Kaliski, R. Housley, + Errata
(see web site) + RFC 5756 Updates for RSAES-OAEP and RSASSA-PSS Algorithm Parameters.

[100] RFC 4056 "Use of the RSASSA-PSS Signature Algorithm in Cryptographic Message Syntax
(CMS)", Internet Request for Comments 4056; J. Schaad.

[101] RFC 4301 "Security Architecture for the Internet Protocol", Internet Request for Comments
4301; S. Kent, K. Seo, + Errata.

[102] RFC 5246 "The Transport Layer Security (TLS) Protocol Version 1.2"
(https://datatracker.ietf.org/doc/rfc5246/), updated by RFC 8446.

[103] RFC 7748 “Elliptic curves for security”, Internet Request for Comments 7724, A. Langley, M.
Hamburg, S. Turner.

[104] RFC 7914 "The scrypt Password-Based Key Derivation Function", Internet Request for
Comments 7914, C. Persival and S. Josefsson. August 2016.

[105] RFC 8017 "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.2", Internet Request for Comments 8017; J. Jonsson, B. Kaliski. November 2016.

[106] RFC 8018 "PKCS #5: Password-Based Cryptography Specification, Version 2.1", Internet
Request for Comments 8018; K. Moriarty, B. Kaliski, A. Rusch. January 2017.

[107] RFC 8439 “ChaCha20 and Poly1305 for IETF Protocols”
(https://tools.ietf.org/html/rfc8439)

[108] RFC 8446 “The Transport Layer Security (TLS) Protocol Version 1.3”, - final version
(https://datatracker.ietf.org/doc/rfc8446/).

W3C Recommendations

[109] XML Signature Syntax and Processing (Second Edition), W3C recommendation 2008:
http://www.w3.org/TR/2008/REC-xmldsig-core-
20080610/http://www.w3.org/TR/2008/PER-xmldsig-core-20080326/.

[110] XML Encryption Syntax and Processing Version 1.1, W3C Candidate Recommendation
2011: http://www.w3.org/TR/2011/CR-xmlenc-core1-20110303/.

PKCS "standards"

PKCS standards are available from http://www.rsa.com

Note that PKCS #1 is now instead maintained as RFC 3447 [96].

[111] PKCS #1, "The Public key cryptography standards - Part 1: RSA encryption standard",
version 1.5, 1993. Obsoleted by v2.1.

[112] PKCS #1, "The Public key cryptography standards - Part 1: RSA cryptography standard",
version 2.1, 2002. Also RFC 3447 [96]. Obsoleted by v2.2.

[113] PKCS #1, "The Public key cryptography standards - Part 1: RSA cryptography standard",
version 2.2, 2016. Also RFC 8017 [105].

[114] PKCS #3, "The Public key cryptography standards - Part 3: Diffie-Hellman key-agreement
standard", version 1.4, 1993.

[115] PKCS #5, Password-Based Cryptography Specification, Version 2.1, 2017. Also RFC 8018
[106].

[116] PKCS #6, "The Public key cryptography standards - Part 6: Extended-Certificate Syntax
Standard", version 1.5, 1993 (superseded by x.509 v3).

https://datatracker.ietf.org/doc/rfc5246/
https://tools.ietf.org/html/rfc8439
http://www.w3.org/TR/2008/PER-xmldsig-core-20080326/
http://www.rsa.com/

www.epc-cep.eu 69 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

[117] PKCS #7, "The Public key cryptography standards - Part 7: Cryptographic message syntax
standard", version 1.5, 1993 (see S/MIME RFC 5652).

[118] PKCS #9, "The Public key cryptography standards - Part 9: Selected Object Classes and
Attribute Types", version 2.0, 2000 (now maintained as RFC 2985).

[119] PKCS #10, "The Public key cryptography standards – Part 10: Cryptographic request syntax
standard", version 1.7, 2000 (now maintained as RFC 2986).

[120] PKCS #11, "The Public key cryptography standards – Part 11: Cryptographic token interface
standard", version 2.30, 2009.

[121] PKCS #13, "The Public key cryptography standards – Part 13: Elliptic Curve Cryptography
standard", under development.

[122] PKCS #15, "The Public key cryptography standards – Part 15: Cryptographic Token
Information Format Standard", version 1.1, 2000 (see ISO/IEC 7816-15).

EMV specifications

EMV specifications are available from EMVCo, www.emvco.com:

[123] EMV 4.3, "Integrated Circuit Card Specifications for Payment Systems: Book 1 Application
Independent ICC to Terminal Interface Requirements, Book 2 Security and Key
Management, Book 3 Application Specification, Book 4 Cardholder, Attendant and Acquirer
Interface Requirements", Version 4.3, EMVCo, 2011.

NIST Special Publications

All NIST Special Publications on cryptography are available from http://csrc.nist.gov/groups/ST/:

[124] NIST SP800-22, A Statistical Test Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications."

[125] NIST SP 800-38A, "Recommendation for Block Cipher Modes of Operation - Methods and
Techniques", + Addendum.

[126] NIST SP 800-38B, "Recommendation for block cipher modes of operation: The CMAC mode
for authentication".

[127] NIST SP 800-38F, "Recommendation for Block Cipher Modes of Operation: Methods for Key
Wrapping".

[128] NIST SP 800-38G, "Recommendation for Block Cipher Modes of Operation: Methods for
Format-Preserving Encryption”.

[129] NIST SP 800-56c, “Recommendation for Key Derivation through Extraction-then-
Expansion”.

[130] NIST SP 800-57 Revision 5, "Recommendation for key management Part 1: General
guideline".

[131] NIST SP 800-67 Revision 2, “Recommendation for Triple Data Encryption Algorithm (TDEA)
Block Cipher”.

[132] NIST SP 800-90A, "Recommendations for Random Number Generation Using Deterministic
Random Bit Generators".

[133] NIST SP 800-131A Revision 2, "Recommendation for Transitioning the use of Cryptographic
Algorithms and Key Lengths".

[134] NIST SP 800-132, "Recommendation for Password-Based Key Derivation".
[135] NIST SP 800-133, "Recommendation for Cryptographic Key Generation".
[136] NIST SP 800-208, "Recommendation for Stateful Hash-Based Signature Schemes".

http://csrc.nist.gov/groups/ST/
http://csrc.nist.gov/publications/drafts/800-38F/Draft-SP800-38F_Aug2011.pdf
http://csrc.nist.gov/publications/drafts/800-38F/Draft-SP800-38F_Aug2011.pdf
https://urldefense.proofpoint.com/v2/url?u=https-3A__csrc.nist.gov_publications_detail_sp_800-2D208_final&d=DwMFaQ&c=uc5ZRXl8dGLM1RMQwf7xTCjRqXF0jmCF6SP0bDlmMmY&r=kaURLuBBPEcdm1Ua2G_chuMqhXHK01GMJujdjTVnGfk&m=ZIl2t5ZiGRU1aMeaS72olwx3JMnEK4TL2wPq9STXCBw&s=BmKqDQ3rkNmjSj1OdYzgK2k5UzfcztjRpfas26Vvbsg&e=

www.epc-cep.eu 70 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

Other references

[137] R. RIVEST, A. SHAMIR and L. ADLEMAN, "A Method for obtaining Digital Signatures and
Public Key Cryptosystems". Communications of the ACM, Vol.21(2), pp 120-126 (1978).

[138] H. DOBBERTIN, A. BOSSELAERS and B. PRENEEL, "RIPEMD-160: A strengthened version of
RIPEMD" In "Fast Software Encryption, Proc. third International Workshop, Cambridge, UK
February 21 – 23, 1996, pp. 71-82, D. Gollman editor", Lecture Notes in Computer Science
No. 1039. Springer-Verlag, Berlin 1996.

[139] D.W. DAVIES and W.L. PRICE, "Security for computer networks", John Wiley & Sons, New
York, 2nd edition 1989.

[140] B. SCHNEIER, "Applied cryptography: Protocols, Algorithms and Source code in C", John
Wiley & Sons, New York, 2nd edition, 1996.

[141] A. J. MENEZES, P.C. VAN OORSCHOT and S. A. VANSTONE, "Handbook of applied
cryptography", CRC Press, Boca Raton 1997, http://cacr.math.uwaterloo.ca/hac/.

[142] IEEE P1363-2000: Standard Specifications For Public Key Cryptography.
[143] R. ANDERSON and R. NEEDHAM "Robustness principles for public key protocols",

Cambridge University Computer Laboratory, (rja14@cl.cam.ac.uk).
[144] D. BONEH, "Twenty years of attacks on the RSA cryptosystem", (dabo@cs.stanford.edu).
[145] M. BELLARE and P. ROGAWAY, "The exact security of digital signatures: How to sign with

RSA and Rabin". In: U.M. Maurer (editor), Advances in Cryptology – Eurocrypt ’96, Lecture
Notes in Computer Science 1070 (1996), Springer-Verlag, pp.399-416.

[146] M. BELLARE and P. ROGAWAY, "Optimal asymmetric encryption – How to encrypt with
RSA". In: A. De Santis (editor), Advances in Cryptology – Eurocrypt ’94, Lecture Notes in
Computer Science 950 (1995), Springer-Verlag, pp.92-111.

[147] E. Biham, "How to Forge DES-Encrypted Messages in 228 Steps",
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?1996/CS/CS0884

[148] A. LENSTRA and E. VERHEUL, "Selecting cryptographic key sizes", 1999.
[149] R. SILVERMAN, "A cost based security analysis of symmetric and asymmetric key lengths,

RSA laboratories bulletin, number 13, April 2000.
[150] J-S. CORON, D. NACCACHE and J.STERN, "On the security of RSA Padding", Crypto '99,

Lecture Notes in Computer Science Volume 1666, pages 1-18, Springer-Verlag, Berlin 1999.
[151] M. BLAZE, W. DIFFIE, R. RIVEST, B. SCHNEIER, T. SHIMOMURA, E. THOMPSON and M.

WIENER, "Minimal Key Lengths for Symmetric Ciphers to Provide Adequate Commercial
Security", January 1996.

[152] S. MURPHY and M.J.B. ROBSHAW, "Comments on the security of the AES and the XSL
Technique",
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.4866&rep=rep1&type=pdf

[153] J.-S. CORON, M. JOYE, D. NACCACHE and P. PAILLIER, "Universal padding schemes for RSA".
In M. Yung, editor, Advances in Cryptology – Crypto 2002, volume 2442 of Lecture Notes in
Computer Science. Springer Verlag, 2002.

[154] B. CANVEL, A. HILTGEN, S. VAUDENAY and M. VUAGNOUX, "Password Interception in a
SSL/TLS Channel". In D. Boneh, editor, Advances in Cryptology - Crypto 2003, volume 2729
of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[155] A. SHAMIR and E. TROMER, "On the Cost of Factoring RSA-1024", Weizmann Institute of
Science, http://www.madchat.org/crypto/cbtwirl.pdf#search='RSA%201024'.

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?1996/CS/CS0884

www.epc-cep.eu 71 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

[156] X. WANG, D. FENG, X. LAI and H. YU, "Collisions for Hash Functions MD4, MD5, HAVAL-128
and RIPEMD", http://eprint.iacr.org/2004/199.pdf.

[157] X. WANG, Y.L. YIN and H. YU, "Collision Search Attacks on SHA1", February 13, 2005,
http://theory.csail.mit.edu/~yiqun/shanote.pdf.

[158] A. LENSTRA, X. WANG, B. DE WEGER. "Colliding X.509 Certificates", version 1.0, 1st March
2005, http://eprint.iacr.org/2005/067.

[159] K.G. PATERSON and A. YAU, "Padding Oracle Attacks on the ISO CBC Mode Encryption
Standard". in T. Okamoto (ed.), Proc. CT-RSA04, Lecture Notes in Computer Science Vol.
2964, pp. 305-323, Springer-Verlag, Berlin, 2004.

[160] A. YAU, K.G. PATERSON and C.J. MITCHELL, "Padding oracle attacks on CBC-mode
encryption with random and secret IVs", Proceedings FSE 2005, Springer LNCS.

[161] A. BIRYUKOV, "Some Thoughts on Time-Memory-Data Tradeoffs",
https://eprint.iacr.org/2005/207

[162] ECRYPT, "Recent Collision Attacks on Hash Functions: ECRYPT Position Paper", Revision 1.1,
17 February 2005, www.ecrypt.eu.org.

[163] ECRYPT CSA, "Algorithms, Key Size and Protocols Report (2018)", Editor Nigel Smart,
Revision 1.0, 28th February 2018, www.ecrypt.eu.org.

[164] S. CONTINI and Y.L. YIN, "Forgery and partial key-recovery attacks on HMAC and NMAC
using hash collisions", ASIACRYPT 2006, pp. 37-53.

[165] X. WANG, Y.L. YIN and H. YU, "Finding Collisions in the full SHA-1", in V Shoup ed. Advances
in Cryptology - CRYPTO 2005 Lecture Notes in Computer Science Vol. 3621, pp 17-36,
Springer-Verlag, Berlin, 2005.

[166] D. GLIGOROSKI, S. ANDOVA and S.J. KNAPSKOG, “On the Importance of the Key Separation
Principle for Different Modes of Operation”, proceedings of ISPEC 2008, Lecture Notes in
Computer Science Vol. 4991, pp 404-418, Springer-Verlag, Berlin, 2008.

[167] P. ROGAWAY and T. SHRIMPTON, "The SIV Mode of Operation for Deterministic
Authenticated-Encryption (Key Wrap) and Misuse-Resistant Nonce-Based Authenticated-
Encryption", http://www.cs.ucdavis.edu/~rogaway/papers/.

[168] A. BOGDANOV, M. KHOVRATOVICH and C. RECHBERGER, "Biclique Cryptanalysis of the Full
AES", http://eprint.iacr.org/2011/449.

[169] J. W. BOS, M. E. KAIHARA, T. KLEINJUNG, A. K. LENSTRA and P. L. MONTGOMERY, "On the
Security of 1024-bit RSA and 160-bit Elliptic Curve Cryptography", version 1, July 14, 2009,
https://documents.epfl.ch/users/l/le/lenstra/public/papers/ecdl.pdf.

[170] G. BERTONI, J. DAEMEN, M. PEETERS and G. VAN ASSCHE, "The Keccak Sponge Family
Function", June 2010, http://keccak.noekeon.org/Keccak-main-2.1.pdf.

[171] G. BERTONI, J. DAEMEN, M. PEETERS and G. VAN ASSCHE, "The Keccak SHA-3 submission,
January 14 2011, http://keccak.noekeon.org/Keccak-submission-3.pdf.

[172] G. BERTONI, J. DAEMEN, M. PEETERS and G. VAN ASSCHE, "The Keccak Reference", January
14 2011, http://keccak.noekeon.org/Keccak-reference-3.0.pdf.

[173] M. STEVENS, "Attacks on Hash Functions and applications", Ph. D. Thesis,
http://www.cwi.nl/system/files/PhD-Thesis-Marc-Stevens-Attacks-on-Hash-Functions-and-
Applications.pdf.

[174] A.K. LENSTRA, J.P. HUGHES, M. AUGIER, J.W. BOS, T. KLEINJUNG and C. WACHTER, "Ron
was wrong, Whit is right, http://eprint.iacr.org/2012/064.pdf.

http://eprint.iacr.org/2005/067
https://eprint.iacr.org/2005/207
http://www.cs.ucdavis.edu/%7Erogaway/papers/
http://eprint.iacr.org/2011/449
http://www.cwi.nl/system/files/PhD-Thesis-Marc-Stevens-Attacks-on-Hash-Functions-and-Applications.pdf
http://www.cwi.nl/system/files/PhD-Thesis-Marc-Stevens-Attacks-on-Hash-Functions-and-Applications.pdf
http://eprint.iacr.org/2012/064.pdf

www.epc-cep.eu 72 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

[175] ENISA, "Algorithms, Key Sizes and Parameters Report, 2013 recommendations", version
1.0, October 2014, www.enisa.europa.eu.

[176] NIST, ITL Bulletin, “Additional secure hash algorithms offer new opportunities for data
protection”, Sept 2015, http://csrc.nist.gov/publications/nistbul/itlbul2015_09.pdf.

[177] NSA, “Cryptography Today”, [192] NSA, “Cryptography Today”,
https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml.

[178] N. KOBLITZ and A.J. MENEZES, “A riddle wrapped in an
enigma”,https://eprint.iacr.org/2015/1018.pdf.

[179] M. STEVENS, https://marc-stevens.nl/research/papers/KPS_freestart80.pdf
[180] C. MITCHELL, On the security of 2-key Triple DES arXiv:1602.06229v1 [cs.CR]
[181] P. PAILLIER, Public-Key Cryptosystems Based on Composite Degree Residuosity Classes.

Advances in Cryptology, EUROCRYPT 1999, LNCS 1592, Springer-Verlag, 1999, pp. 223-238.
[182] A. JOUX, A new index calculus algorithm with complexity L(1/4+o(1)) in very small

characteristic, iacr e-archive 2013.
[183] K BHARGAVAN, G. LEURENT, On the Practical (In-)Security of 64-bit Block Ciphers —

Collision Attacks on HTTP over TLS and OpenVPN, ACM CCS 2016.
[184] B. PRENEEL and P. C. VAN OORSCHOT, A key recovery attack on the ANSI X9.19 retail MAC.

Electronics Letters, 32:1568-1569, 1996.
[185] C. COSTELLO and P. LONGA, FourQ: four-dimensional decompositions on a Q-curve over

the Mersenne prime, Advances in Cryptology – ASIACRYPT 2015.
[186] M. Stevens, E Bursztein, P. Karpman, A. Albertini and Y. Markov, The first collision for full

SHA-1, https://shattered.io/static/shattered.pdf.
[187] M. Amy, O. Di Matteo, V. Gheorghiu, M. Mosca, A. Parent and J. Schanck, Estimating the

cost of generic quantum pre-image attacks on SHA-2 and SHA-3,
https://eprint.iacr.org/2016/992.pdf.

[188] S.NAKAMOTO, "Bitcoin: A peer-to-peer electronic cash system”,
https://bitcoin.org/bitcoin.pdf, 2008.

[189] I.GIECHASKIEL, C. CREMERS, K.B. RASMUSSEN, “On bitcoin security in the presence of
broken crypto primitives”, 2016.

[190] EUROPEAN UNION AGENCY FOR NETWORK AND INFORMATION SECURITY (ENISA)
“Distributed Ledger Technology & Cybersecurity”, December 2016.

[191] D.ROMANO, G.SCHMID, “Beyond Bitcoin: A critical look at blockchain-based systems”,
September 2017.

[192] UK GOVERNMENT OFFICE FOR SCIENCE, “Distributed ledger technology: beyond
blockchain”, January 2016.

[193] J.A GARAY, A. KIAYIAS, G. PANAGIOTAKOS, “Proofs of Work for blockchain protocols”.
[194] M. NAMEC, M. SYS, P. SVENDA, D. KLUSEC, V. MATYAS, “The Return of Coppersmith’s

Attack: Practical Factorization of Widely Used RSA Moduli”, ACM CCS 2017.
[195] S. FLUHRER "Reassessing Grover's Algorithm", 2017, https://eprint.iacr.org/2017/811
[196] Gaetan Laurence and Thomas Peyrin "SHA-1 is a Shambles First Chosen-Prefix Collision on

SHA-1 and Application to the PGP Web of Trust", January 2020,
https://eprint.iacr.org/2020/014.pdf

[197] NIST Blockchain Technology Overview, October 2018.

http://www.enisa.europa.eu/
https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://eprint.iacr.org/2015/1018.pdf
https://marc-stevens.nl/research/papers/KPS_freestart80.pdf
https://sweet32.info/SWEET32_CCS16.pdf
https://sweet32.info/SWEET32_CCS16.pdf
https://shattered.io/static/shattered.pdf
https://eprint.iacr.org/2016/992.pdf
https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2017/811
https://eprint.iacr.org/2020/014.pdf

www.epc-cep.eu 73 / 73

Guidelines on cryptographic algorithms usage and key management

EPC342-08 / 2021 version 11.0

[198] Status of quantum computer development, v1.2, BSI Project 283, 2020:
https://www.bsi.bund.de/EN/Topics/Cryptography/QuantumComputing/quantum_compu
ting.html.

[199] M. BAUDET, A. CHING, A. CHURSIN, G. DANEZIS, F. GARILLOT, Z. LI, D. MALKHI, O. NAOR,
D. PERELMAN, A. SONNINO “State Machine Replication in the Libra Blockchain”, May 2020

[200] BSI TR-02102-1: "Cryptographic Mechanisms: Recommendations and Key Lengths" Version:
2020-1:
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG
02102/BSI-TR-02102-1.html

[201] NIST Cybersecurity White Paper April 2021: “Getting Ready for Post-Quantum
Cryptography: Exploring Challenges Associated with Adopting and Using Post-Quantum
Cryptographic Algorithms”: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04282021.pdf

[202] BSI recommendations paper, August 2020: “Migration zu Post-Quanten-Kryptografie”:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-
Kryptografie.pdf

[203] Quantum Computing and the Financial Services Industry
https://committee.iso.org/sites/tc68/home/articles/content-left-area/articles/quantum-
computing-in-the-financi.html

[204] “The unbearable lightness of PIN cracking” (conference paper):
https://www.researchgate.net/publication/220797019_The_Unbearable_Lightness_of_PIN_Cr
acking

[205] OWASP: “Certificate and Public Key Pinning” https://owasp.org/www-
community/controls/Certificate_and_Public_Key_Pinning

https://www.bsi.bund.de/EN/Topics/Cryptography/QuantumComputing/quantum_computing.html
https://www.bsi.bund.de/EN/Topics/Cryptography/QuantumComputing/quantum_computing.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04282021.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf
https://committee.iso.org/sites/tc68/home/articles/content-left-area/articles/quantum-computing-in-the-financi.html
https://committee.iso.org/sites/tc68/home/articles/content-left-area/articles/quantum-computing-in-the-financi.html
https://www.researchgate.net/publication/220797019_The_Unbearable_Lightness_of_PIN_Cracking
https://www.researchgate.net/publication/220797019_The_Unbearable_Lightness_of_PIN_Cracking

	Executive Summary
	1 Introduction
	1.1 Scope of the document
	1.2 Document structure and terminology
	1.3 Recommendations
	1.4 Implementation best practices

	2 Algorithm Taxonomy
	2.1 Technical Characteristics
	2.1.1 Primitives
	2.1.1.1 Un-keyed (Hash Functions)
	2.1.1.2 Symmetric key
	2.1.1.3 Asymmetric Key

	2.1.2 Elementary Constructions
	2.1.2.1 Symmetric Encryption
	2.1.2.2 Asymmetric Encryption
	2.1.2.3 MAC
	2.1.2.4 Signatures

	2.2 Typical Usage
	2.2.1 Confidentiality Protection
	2.2.1.1 Data Confidentiality
	2.2.1.2 Key Encapsulation
	2.2.1.3 Key Establishment

	2.2.2 Integrity Protection
	2.2.2.1 Data origin / Message / Entity Authentication
	2.2.2.2 Non-Repudiation

	2.3 Standardisation

	3 Algorithm Related Design Issues
	3.1 Primitives
	3.1.1 Unkeyed
	3.1.1.1 Hashes
	3.1.1.2 Modification Detection Code
	3.1.1.3 Length recommendations

	3.1.2 Symmetric Key
	3.1.2.1 Triple DES (TDES)
	3.1.2.2 Advanced Encryption Standard
	3.1.2.3 Efficiency
	3.1.2.4 Algorithm and Key length recommendations

	3.1.3 Asymmetric key
	3.1.3.1 RSA specific issues
	3.1.3.2 Elliptic Curve Cryptosystem (ECC) specific issues
	3.1.3.3 Comparison of RSA with ECC
	3.1.3.4 Algorithm and Key length recommendations

	3.1.4 Security levels
	3.1.5 Quantum computing considerations
	3.1.5.1 Impact on cryptographic primitives
	3.1.5.2 Current progress in quantum computers

	3.1.6 ISO Recommendation for Financial Services

	3.2 Constructions
	3.2.1 Symmetric Encryption
	3.2.1.1 Block Cipher Modes of Operation
	3.2.1.2 Stream ciphers
	3.2.1.3 Format preserving encryption

	3.2.2 Asymmetric Encryption
	3.2.3 Hybrid Encryption
	3.2.4 MACs
	3.2.4.1 CBC MACS
	3.2.4.2 Hash MACS
	3.2.4.3 Length of MACs

	3.2.5 Digital Signatures
	3.2.5.1 Signatures with appendix and signatures with message recovery
	3.2.5.2 Length of Hash
	3.2.5.3 Efficiency

	3.2.6 Authenticated Encryption
	3.2.7 Distributed ledger technologies
	3.2.7.1 Introduction
	3.2.7.2 Blockchain networks
	3.2.7.3 Security considerations

	3.3 Domain of Application
	3.4 Implementation and interoperability issues
	3.4.1 Security protocols
	3.4.2 Data formatting issues
	3.4.3 Implementation rules
	3.4.4 Key management impact on interoperability
	3.4.5 Implementation quality and side-channel attacks
	3.4.6 Algorithm OIDs

	4 Key Management Issues
	4.1 Symmetric algorithms
	4.1.1 Key generation and derivation
	4.1.2 Key backup and storage
	4.1.3 Key distribution
	4.1.4 Key installation
	4.1.5 Key usage and key separation
	4.1.6 Key deletion
	4.1.7 Key cryptoperiod

	4.2 Asymmetric algorithms
	4.2.1 Key generation
	4.2.2 Example of a hybrid key architecture
	4.2.3 Key backup and storage
	4.2.4 Key distribution
	4.2.5 Key agreement and forward secrecy
	4.2.6 Public Key installation
	4.2.7 Certificate revocation and expiry
	4.2.8 Key usage and key separation
	4.2.9 Key deletion and archiving
	4.2.10 Key crypto period

	4.3 Key recovery and key escrow
	4.4 Additional information

	5 Random Numbers
	6 ANNEX I: Terminology
	7 ANNEX II: Bibliography

